Skip to main content

Gene Pyramiding: An Emerging Control Strategy Against Insect Pests of Agronomic Crops

  • Chapter
  • First Online:
Agronomic Crops

Abstract

The present chapter is focused on the evolution of the insect’s resistance against Bt crops and describes the most appropriate approach in order to cope with this serious issue. Different techniques have been used in the past to manage insect evolution against Bt crops. Among them, gene pyramiding, or stacked combinations of different genes in a single crop with their ability to target the same insect pest species, is proven to be a very powerful and effective tool in managing insect resistance problem. The principle goal of gene pyramiding approach is to develop transgenic plants with extra resistance against pests and to enhance crop yield. To obtain transgenic crops with durable and broad-spectrum resistance against insect pests and diseases, the pyramiding of predominant genes (multigene strategy) implying a unique mode of action is a powerful strategy. Gene pyramiding is a useful technique in controlling different insect species as compared to transgenic variety comprising of single toxin trait. Many studies have shown that gene pyramiding is advantageous in controlling different insect species in a single Bt crop, but due to continuous pressure on insect pests, there are chances that the herbivore may evolve resistance. Therefore, reliance only on gene pyramiding strategies is not a complete solution to Bt resistance. It is, therefore, necessary that different combinations of strategies like RNAi with gene pyramiding techniques will be required in the near future that will not only shield our crop against insect pest damages but also reduce reliance on heavy insecticide usage in crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali MI, Luttrell RG (2007) Susceptibility of bollworm and tobacco budworm (Lepidoptera: Noctuidae) to Cry2Ab2 insecticidal protein. J Econ Entomol 100:921–931

    Article  CAS  PubMed  Google Scholar 

  • Andow DA, Pueppke SG, Schaafsma AW, Gassmann AJ, Sappington TW, Meinke LJ, Mitchell PD, Hurley TM, Hellmich RL, Pat Porter R (2016) Early detection and mitigation of resistance to maize by Western corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 109(1):1–12

    Article  PubMed  Google Scholar 

  • Asokan R, Chandra GS, Manamohan M, Kumar NK, Sita T (2014) Response of various target genes to diet-delivered dsRNA mediated RNA interference in the cotton bollworm, Helicoverpa armigera. J Pest Sci 87:163–172

    Article  Google Scholar 

  • Atsumi S, Miyamato K, Yamamoto K, Narukawa J, Kawai S et al (2012) Single amino acid mutation in an ATP-binding cassette transporter causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori. Proc Natl Acad Sci USA 109:1591–1598

    Article  Google Scholar 

  • Bates SL, Zhao JZ, Roush RT, Shelton AM (2005) Insect resistance management in GM crops: past, present and future. Nat Biotechnol 23:57–62

    Article  CAS  PubMed  Google Scholar 

  • Belles X, Martin D, Piulachs MD (2005) The mevalonate pathway and the synthesis of juvenile hormone in insects. Annu Rev Entomol 50:181–199

    Article  CAS  PubMed  Google Scholar 

  • Berger D (2000) Strategies for transgene pyramiding. In: Lizarraga C, Hollister A (eds) Proceedings of the international workshop on transgenic potatoes for the benefit of resource-poor farmers in developing countries. International Potato Center (CIP) Press, Lima, pp 67–74

    Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Soberón M (2008) How to cope with insect resistance to Bt toxins? Trends Biotechnol 26:573–579

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41:423–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao J, Zhao JZ, Tang J, Shelton A, Earle E (2002) Broccoli plants with pyramided cry1Ac and cry1C Bt genes control diamondback moths resistant to Cry1A and Cry1C proteins. Theor Appl Genet 105:258–264

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Marmey P, Taylor NJ, Brizard JP, Espinoza C, D’Cruz P, Huet H, Zhang S, de Kochko A, Beachy RN, Fauquet CM (1998) Expression and inheritance of multiple transgenes in rice plants. Nat Biotechnol 16:1060–1064

    Article  CAS  PubMed  Google Scholar 

  • Cingel A, Savić J, Ćosić T, Zdravković-Korać S, Momčilović I, Smigocki A, Ninković S (2014) Pyramiding rice cystatin OCI and OCII genes in transgenic potato (Solanum tuberosum L.) for resistance to Colorado potato beetle (Leptinotarsa decemlineata Say). Euphytica 198:425–438

    Article  CAS  Google Scholar 

  • Cohen JI (2005) Poorer nations turn to publicly developed GM crops. Nat Biotechnol 23:27–33

    Article  CAS  PubMed  Google Scholar 

  • Dennehy TJ, Head GP, Moar W, Greenplate J, Mohan KS et al (2010) Status of PBW resistance to Bollgard cotton in India. In: 58th ESA meeting, pp 12–15

    Google Scholar 

  • Dhurua S, Gujar GT (2011) Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manag Sci 67:898–903

    Article  CAS  PubMed  Google Scholar 

  • Dively GP, Venugopal PD, Finkenbinder C (2016) Field-evolved resistance in corn earworm to Cry proteins expressed by transgenic sweet corn. PLoS One 11:e0169115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fabrick JA, Mathew LG, Tabashnik BE, Li X (2011) Insertion of an intact CR1 retrotransposon in a cadherin gene linked with Bt resistance in the pink bollworm, Pectinophora gossypiella. Insect Mol Biol 20:651–665

    Article  CAS  PubMed  Google Scholar 

  • Farias JR, Andow DA, Horikoshi RJ, Sorgatto RJ, Fresia P et al (2014) Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot 64:150–158

    Article  Google Scholar 

  • Ferre´ J, Van Rie J (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 47:501–533

    Article  PubMed  Google Scholar 

  • Ferry N, Edwards MG, Mulligan EA, Emami K, Petrova AS, Frantescu M, Davison GM, Gatehouse AMR (2004) Engineering resistance to insect pests. In: Christou P, Klee H (eds) Handbook of plant biotechnology, vol 1. Wiley, Chichester, pp 373–394

    Google Scholar 

  • François IE, De Bolle MF, Dwyer G, Goderis IJ, Woutors PF, Verhaert PD, Proost P, Schaaper WM, Cammue BP, Broekaert WF (2002) Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteins. Plant Physiol 128:1346–1358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu KY, Li Q, Zhou LT, Meng QW, Lü FG, Guo WC, Li GQ (2016) Knockdown of juvenile hormone acid methyl transferase severely affects the performance of Leptinotarsa decemlineata (Say) larvae and adults. Pest Manag Sci 72:1231–1241

    Article  CAS  PubMed  Google Scholar 

  • Gahan LJ, Ma Y-T, Coble MLMG, Gould F, Moar WJ, Heckel DG (2005) Genetic basis of resistance to Cry1Ac and Cry2Aa in Heliothis virescens (Lepidoptera: Noctuidae). J Econ Entomol 98(4):1357–1368

    Article  CAS  PubMed  Google Scholar 

  • Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW (2011) Field-evolved resistance to Bt maize by western corn rootworm. PLoS One 6:e22629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassmann AJ, Petzold-Maxwell JL, Clifton EH, Dunbar MW, Hoffmann AM, Ingber DA, Keweshan RS (2014) Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize. Proc Natl Acad Sci USA 111:5141–5146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassmann AJ, Shrestha RB, Jakka SR, Dunbar MW, Clifton EH, Paolino AR, Ingber DA, French BW, Masloski KE, Dounda JW, St. Clair CR (2016) Evidence of resistance to Cry34/35Ab1 corn by western corn rootworm (Coleoptera: Chrysomelidae): root injury in the field and larval survival in plant-based bioassays. J Econ Entomol 109:1872–1880

    Article  PubMed  Google Scholar 

  • Goderis IJ, De Bolle MF, François IE, Wouters PF, Broekaert WF, Cammue BP (2002) A set of modular plant transformation vectors allowing flexible insertion of up to six expression units. Plant Mol Biol 50:17–27

    Article  CAS  PubMed  Google Scholar 

  • Gould F (1998) Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu Rev Entomol 43:701–726

    Article  CAS  PubMed  Google Scholar 

  • Halpin C (2005) Gene stacking in transgenic plants the challenge for 21st century plant biotechnology. Plant Biotechnol J 3:141–155

    Article  CAS  PubMed  Google Scholar 

  • Halpin C, Ryan M (2004) Redirecting metabolism by co-ordinate manipulation of multiple genes. In: Kholodenko BN, Westerhoff HV (eds) Metabolic engineering in the post-genomic era. Cromwell Press, England, pp 377–408

    Google Scholar 

  • Hutchison WD, Burkness EC, Mitchell PD, Moon RD, Leslie TW, Fleischer SJ, Abrahamson M, Hamilton KL, Steffey KL, Gray ME, Hellmich RL (2010) Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330:222–225

    Article  CAS  PubMed  Google Scholar 

  • ISAAA (2017) Global status of commercialized biotech/GM crops in 2017: biotech crop adoption surges as economic benefits accumulate in 22 years. ISAAA Brief No. 53. ISAAA, Ithaca

    Google Scholar 

  • Jackson RE, Bradley JR, Van Duyn JW (2003) Field performance of transgenic cottons expressing one or two Bacillus thuringiensis endotoxins against bollworm, Helicoverpa zea (Boddie). J Cotton Sci 7:57–64

    Google Scholar 

  • Khajuria C, Buschman LL, Chen MS, Siegfried BD, Zhu KY (2011) Identification of a novel aminopeptidase P-like gene (OnAPP) possibly involved in Bt toxicity and resistance in a major corn pest (Ostrinia nubilalis). PLoS One 6:e23983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruger M, Van Rensburg JBJ, Van den Berg J (2011) Resistance to Bt maize in Busseola fusca (Lepidoptera: Noctuidae) from Vaalharts, South Africa. Environ Entomol 40:477–483

    Article  CAS  Google Scholar 

  • Lim ZX, Robinson KE, Jain RG, Chandra GS, Asokan R, Asgari S, Mitter N (2016) Diet-delivered RNAi in Helicoverpa armigera–progresses and challenges. J Insect Physiol 85:86–93

    Article  CAS  PubMed  Google Scholar 

  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Maqbool SB, Riazuddin S, Loc NT, Gatehouse AM, Gatehouse JA, Christou P (2001) Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Mol Breed 7:85–93

    Article  CAS  Google Scholar 

  • Mehrotra M, Singh AK, Sanyal I, Altosaar I, Amla DV (2011) Pyramiding of modified cry1Ab and cry1Ac genes of Bacillus thuringiensis in transgenic chickpea (Cicer arietinum L.) for improved resistance to pod borer insect Helicoverpa armigera. Euphytica 182(1):87–102

    Article  CAS  Google Scholar 

  • McCormac AC, Fowler MR, Chen DF, Elliott MC (2001) Efficient co-transformation of Nicotiana tabacum by two independent T-DNAs, the effect of T-DNA size and implications for genetic separation. Transgenic Res 10:143–155

    Article  CAS  PubMed  Google Scholar 

  • Monnerat R, Martins E, Macedo C, Queiroz P, Praça L, Soares CM, Moreira H, Grisi I, Silva J, Soberon M, Bravo A (2015) Evidence of field-evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Brazil that is still sensitive to modified Bt toxins. PLoS One 10:e0119544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morin S, Biggs RW, Sisterson MS, Shriver L, Ellers-Kirk C, Higginson D, Holley D, Gahan LJ, Heckel DG, Carriere Y, Dennehy TJ (2003) Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc Natl Acad Sci USA 100:5004–5009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni M, Ma W, Wang X, Gao M, Dai Y, Wei X, Zhang L, Peng Y, Chen S, Ding L, Tian Y (2017) Next-generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance. Plant Biotechnol J 15:1204–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ocelotl J, Sánchez J, Arroyo R, García-Gómez BI, Gómez I, Unnithan GC, Tabashnik BE, Bravo A, Soberón M (2015) Binding and oligomerization of modified and native Bt toxins in resistant and susceptible Pink Bollworm. PLoS One 10:e0144086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roush R (1998) Two d-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not? Philos Trans R Soc Lond Ser B Biol Sci 353:1777–1786

    Article  CAS  Google Scholar 

  • Salim M, Gökçe A, Naqqash MN, Bakhsh A (2016) An overview of biological control of economically important lepidopteron pests with parasitoids. J Entomol Zool 4:354–362

    Google Scholar 

  • Saljoqi AUR, Salim M, Khalil SK, Khurshid I (2015) Field application of Trichogramma chilonis (Ishii) for the management of sugarcane borers. Pak J Zool 47:783–791

    Google Scholar 

  • Sampson K, Zaitseva J, Stauffer M, Berg BV, Guo R, Tomso D, McNulty B, Desai N, Balasubramanian D (2017) Discovery of a novel insecticidal protein from Chromobacterium piscinae, with activity against Western Corn Rootworm, Diabrotica virgifera virgifera. J Invertebr Pathol 142:34–43

    Article  CAS  PubMed  Google Scholar 

  • Shelton AM, Tang JD, Roush RT, Metz TD, Earle ED (2000) Field tests on managing resistance to Bt-engineered plants. Nat Biotechnol 18:339–342

    Article  CAS  PubMed  Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881

    Article  CAS  PubMed  Google Scholar 

  • Siegel JP (2000) Bacteria. In: Lacey LL, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Kluwer Scientific Publishers, Dordrecht, pp 209–230

    Chapter  Google Scholar 

  • Smith JL, Lepping MD, Rule DM, Farhan Y, Schaafsma AW (2017) Evidence for field-evolved resistance of Striacosta albicosta (Lepidoptera: Noctuidae) to Cry1F Bacillus thuringiensis protein and transgenic corn hybrids in Ontario, Canada. J Econ Entomol 110:2217–2228

    Article  CAS  PubMed  Google Scholar 

  • Soberón M, Pardo-López L, López I, Gómez I, Tabashnik B et al (2007) Engineering modified Bt toxins to counter insect resistance. Science 318:1640–1642

    Article  PubMed  CAS  Google Scholar 

  • Soberon M, Gill SS, Bravo A (2009) Signaling versus punching hole: how do Bacillus thuringiensis toxins kill insect midgut cells? Cell Mol life Sci 66:1337–1349

    Article  CAS  PubMed  Google Scholar 

  • Storer NP, Babcock JM, Schlenz M, Meade T, Thompson GD, Bing JW, Huckaba RM (2010) Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J Econ Entomol 103:1031–1038

    Article  PubMed  Google Scholar 

  • Tabashnik BE (2015) ABCs of insect resistance to Bt. PLoS Genet 11:e1005646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tabashnik BE, Carrière Y (2017) Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35:926–935

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Gassmann AJ, Crowder DW, Carriére Y (2008) Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol 26(2):199–202

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Sisterson MS, Ellsworth PC, Dennehy TJ, Antilla L et al (2010) Sup pressing resistance to Bt cotton with sterile insect releases. Nat Biotechnol 28:1304–1307

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Brevault T, Carrière Y (2013) Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31:510–521

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Mota-Sanchez D, Whalon ME, Hollingworth RM, Carrière Y (2014) Defining terms for proactive management of resistance to Bt crops and pesticides. J Econ Entomol 107:496–507

    Article  CAS  PubMed  Google Scholar 

  • Thomson JM, Lafayette PR, Schmidt MA, Parrott WA (2002) Artificial gene-clusters engineered into plants using a vector system based on intron-and intein-encoded endonucleases. In Vitro Cell Dev Biol Plant 38:537–542

    Article  CAS  Google Scholar 

  • Tian G, Cheng L, Qi X, Ge Z, Niu C, Zhang X, Jin S (2015) Transgenic cotton plants expressing double-stranded RNAs target HMG-CoA reductase (HMGR) gene inhibits the growth, development and survival of cotton bollworms. Int J Biol Sci 11:1296–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vachon V, Laprade R, Schwartz JL (2012) Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. J Invertebr Pathol 111:1–12

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Ma Y, Wan P, Liu K, Xiao Y, Wang J, Cong S, Xu D, Wu K, Fabrick JA, Li X (2018) Resistance to Bacillus thuringiensis linked with a cadherin transmembrane mutation affecting cellular trafficking in pink bollworm from China. Insect Biochem Mol Biol 94:28–35

    Article  CAS  PubMed  Google Scholar 

  • Wei JZ, O’Rear J, Schellenberger U, Rosen BA, Park YJ, McDonald MJ, Zhu G, Xie W, Kassa A, Procyk L, Perez Ortega C (2018) A selective insecticidal protein from Pseudomonas mosselii for corn rootworm control. Plant Biotechnol J 16:649–659

    Article  CAS  PubMed  Google Scholar 

  • Wynant N, Santos D, Verdonck R, Spit J, Van Wielendaele P, Broeck JV (2014) Identification, functional characterization and phylogenetic analysis of double stranded RNA degrading enzymes present in the gut of the desert locust, Schistocerca gregaria. Insect Biochem Mol Biol 46:1–8

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Yu L, Wu Y (2005) Disruption of a cadherin gene associated with resistance to Cry1Ac -endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Appl Environ Microbiol 71(2):948–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yalpani N, Altier D, Barry J, Kassa A, Nowatzki TM, Sethi A, Zhao JZ, Diehn S, Crane V, Sandahl G, Guan R (2017) An Alcaligenes strain emulates Bacillus thuringiensis producing a binary protein that kills corn rootworm through a mechanism similar to Cry34Ab1/Cry35Ab1. Sci Rep 7:3063. https://doi.org/10.1038/s41598-017-03544-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Chen H, Tang W, Hua H, Lin Y (2011) Development and characterization of transgenic rice expressing two Bacillus thuringiensis genes. Pest Manag Sci 67:414–422

    Article  CAS  PubMed  Google Scholar 

  • Yu XD, Liu ZC, Huang SL, Chen ZQ, Sun YW, Duan PF, Ma YZ et al (2016) RNAi-mediated plant protection against aphids. Pest Manag Sci 72:1090–1098

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Candas M, Griko NB, Rose-Young L, Bulla LA Jr (2005) Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R 1 expressed in insect cells. Cell Death Differ 12:1407–1416

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Candas M, Griko NB, Taussig R, Bulla LA (2006) A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc Natl Acad Sci USA 103:9897–9902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao JZ, Cao J, Li Y, Collins HL, Roush RT, Earle ED, Shelton AM (2003) Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21:1493–1497

    Article  CAS  PubMed  Google Scholar 

  • Zhao JZ, Cao J, Collins HL, Bates SL, Roush RT, Earle ED, Shelton AM (2005) Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proc Natl Acad Sci USA 102:8426–8430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zukoff SN, Ostlie KR, Potter B, Meihls LN, Zukoff AL, French L, Ellersieck MR, Wade French B, Hibbard BE (2016) Multiple assays indicate varying levels of cross resistance in Cry3Bb1-selected field populations of the western corn rootworm to mCry3A, eCry3. 1Ab, and Cry34/35Ab1. J Econ Entomol 109:1387–1398

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Tübitak 2215 for providing fully funded PhD scholarship to Mr. Muhammad Nadir Naqqash and Muhammad Salim.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salim, M., Gökçe, A., Naqqash, M.N., Bakhsh, A. (2020). Gene Pyramiding: An Emerging Control Strategy Against Insect Pests of Agronomic Crops. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-0025-1_16

Download citation

Publish with us

Policies and ethics