Skip to main content

Drought Tolerance: Breeding Efforts in Sugarcane

  • Chapter
  • First Online:
Agronomic Crops

Abstract

Water is an essential necessity for proper crop growth and high yield. The requirement of water for the crop could not be fulfilled just by the uptake by crop roots from ground but by additional irrigation. The levels of groundwater is depleting with increase in time due to excessive usage /wastage and high temperatures this will cause defciency of water not only for irrigation but also for human consumption. Deficiency of water in crop leads to several changes in physiological and metabolic activities. In sugarcane crop, changes in leaf water potential, relative water content, osmoregulators, etc. have been observed. Sugarcane is an important crop in terms of economical purposes as it is the main producer of sugar and bio-energy all throughout the world. The prevailing drought condition due to the climate change scenario is hampering the productivity of the crop. To manage this problem, developing a tolerant variety for such a condition is the best option although there are several constrains in doing so. Furthermore, for breeding a tolerant variety, the breeder must keep in mind the selection criteria for choosing the right parent for achieving the correct result. This chapter is emphasizing on the breeding efforts in developing a drought-tolerant sugarcane variety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DEF 1:

disulfide isomerase protein 1

ERFs:

ethylene-responsive factor proteins

HSP:

heat shock proteins

IGS:

indole-3-glycerol phosphate synthase

LEA:

late embryogenesis abundance proteins

ROS:

reactive oxygen species

Scdr 1:

sugarcane drought-responsive gene 1

SOD:

superoxide dismutase genes

References

  • Allen M, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki MA (1998) Novel mode of DNA recognition by a β-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J 17:5484–5496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida CMA, Donato VMTS, Amaral DOJ, Lima GSA, Brito GG, Lima MMA, Correia MTS, Silva MV (2013) Differential gene expression in sugarcane induced by salicylic acid and under water deficit conditions. Agric Sci Res J 3(1):38–44

    Google Scholar 

  • Aloni R, Schwalm K, Langhans M, Ullrich C (2003) Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 216:841–853

    Article  CAS  PubMed  Google Scholar 

  • Augustine SM (2016) Function of heat-shock proteins in drought tolerance regulation of plants. In: Hossain M, Wani S, Bhattacharjee S, Burritt D, Tran LS (eds) Drought stress tolerance in plants. Springer, Cham, pp 163–185

    Chapter  Google Scholar 

  • Augustine SM, Narayan JA, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V, Subramonian N (2015) Erianthus arundinaceus HSP70 (EaHSP70) over expression increases drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Sci 232:23–34

    Google Scholar 

  • Azevedo RA, Carvalho RF, Cia MC, Gratão PL (2011) Sugarcane under pressure: an overview of biochemical and physiological studies of abiotic stress. Trop Plant Biol 4:42–51

    Article  CAS  Google Scholar 

  • Begcy K, Mariano ED, Gentile A, Lembke CG, Zingaretti SM, Souza GM, Menossi M (2012) A Novel Stress-Induced Sugarcane Gene confers tolerance to drought, salt and oxidative stress in transgenic tobacco plants. PLoS One. https://doi.org/10.1371/journal.pone.0044697

  • Bell MA, Fischer RA, Byerlee D, Sayre K (1995) Genetic and agronomic contributions to yield gains: a case study for wheat. Field Crops Res 44:55–65

    Article  Google Scholar 

  • Berding N, Skinner JC (1987) Traditional breeding methods. In: Anonymous (eds) Copersucar international sugarcane breeding workshop, Copersucar, Brazil, pp 269–320

    Google Scholar 

  • Boaretto LF, Carvalho G, Borgo L, Creste S, Landell MG, Mazzafera P, Azevedo RA (2014) Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiol Biochem 74:165–175

    Article  CAS  PubMed  Google Scholar 

  • Borges JC, Peroto MC, Ramos CHI (2001) Molecular chaperone genes in the sugarcane expressed sequence database (SUCEST). Genet Mol Biol 24:85–92

    Article  CAS  Google Scholar 

  • Borrás-Hidalgo O, Thomma BPHJ, Carmona E, Borroto CJ, Pujol M, Arencibia A, Lopez J (2005) Identification of sugarcane genes induced in disease-resistant somaclones upon inoculation with Ustilago scitaminea or Bipolaris sacchari. Plant Physiol Biochem 43:1115–1121

    Article  PubMed  CAS  Google Scholar 

  • Breaux RD (1987) Some breeding strategies with bi parental and poly crosses. In: Anonymous (eds) Copersucar international sugarcane breeding workshop, Copersucar, Brazil, pp 71–86

    Google Scholar 

  • Buckley TN (2005) The control of stomata by water balance. New Phytol 168(2):275–292

    Google Scholar 

  • Bundock PC, Eliott FG, Ablett G, Benson AD, Casu RE, Aitken KS, Henry RJ (2009) Targeted single nucleotide polymorphism (SNP) discovery in a highly polyploid plant species using 454 sequencing. Plant Biotechnol J 7:347–354

    Article  CAS  PubMed  Google Scholar 

  • Buzacott JH (1965) Cane varieties and breeding. In: Kim NJ, Mungomery RW, Huges C (eds) Manual of cane growing. Sydney, pp 220–253

    Google Scholar 

  • Cia M, Guimarães A, Medici L, Chabregas S, Azevedo R (2012) Antioxidant responses to water deficit by drought-tolerant and-sensitive sugarcane varieties. Annu Appl Biol 161:313–324

    Article  CAS  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonality in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  • Cox M, Hogarth M, Smith G (2000) Cane breeding and improvement. In: Hogarth M, Allsopp P (eds) Manual of cane growing. Bureau of Sugar Experimental Stations, Indooroopilly, pp 91–108

    Google Scholar 

  • dos Santos CM, de Almeida Silva M (2015) Physiological and biochemical responses of sugarcane to oxidative stress induced by water deficit and paraquat. Acta Physiol Plant 37:1–14

    Article  CAS  Google Scholar 

  • dos Santos CM, de Almeida Silva M, Lima GPP, Bortolheiro FPAP, Brunelli MC, Oliver R (2015) Physiological changes associated with antioxidant enzymes in response to sugarcane tolerance to water deficit and rehydration. Sugar Tech 17:291–304

    Google Scholar 

  • Epstein E, Rains DW (1987) Advances in salt tolerance. Plant Soil 99:17–29

    Article  CAS  Google Scholar 

  • Evans LT (1935) Investigation on root system of sugarcane varieties. Mauritius Dep Ag Res Sta Bull 6:44

    Google Scholar 

  • Evans LT, Fischer RA (1999) Yield potential: its definition, measurement and significance. Crop Sci 39:1544–1551

    Article  Google Scholar 

  • Ferreira THS, Tsunada MS, Bassi D, Araújo P, Mattiello L, Guidelli GV, Righetto GL, Gonçalves VR, Lakshmanan P, Menossi M (2017) Sugarcane water stress tolerance mechanisms and its implications on developing biotechnology solutions. Front Plant Sci 8:1077. https://doi.org/10.3389/fpls.2017.01077

    Article  PubMed  PubMed Central  Google Scholar 

  • Fitter AH, Hay RKM (1987) Environmental physiology of plants. Academic, San Diego, p 423

    Google Scholar 

  • Flores S (2003) Fifty years of breeding sugarcane in Mexico. Sugar J 66(5):23–25

    Google Scholar 

  • Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M (2005) AREB1 is a transcription activator of novel ABRE dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukai S, Cooper M (1995) Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crop Res 40:67–86

    Article  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    Google Scholar 

  • Goddijn OJM, van Dun K (1999) Trehalose metabolism in plants. Trend Plant Sciences 4:315–319

    Article  CAS  Google Scholar 

  • Graça JP, Rodrigues FA, Farias JRB, Oliveira MCN, Hoffmann-Campo CB, Zingaretti SM (2010) Physiological parameters in sugarcane cultivars submitted to water deficit. Braz J Plant Physiol 22:189–197

    Article  Google Scholar 

  • Guimarães ER, Mutton MA, Mutton MJR, Ferro MIT, Ravaneli GC, Silva JAD (2008) Free proline accumulation in sugarcane under water restriction and spittlebug infestation. Sci Agric 65:628–633

    Article  Google Scholar 

  • Heinz DJ (1987) Sugar improvement through breeding, vol 11. Elsevier, Amsterdam/New York, pp 1–603

    Book  Google Scholar 

  • Heinz DJ, Tew T (1987) Hybridization procedures. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, Amsterdam, pp 313–342

    Chapter  Google Scholar 

  • Hemaprabha G, Nagarajan R, Alarmelu S (2004) Response of sugarcane genotypes to water deficit stress. Sugar Tech 6(3):165–168

    Article  CAS  Google Scholar 

  • Hogarth DM, Skinner JC (1987) Computerisation of parental selection, pp 87–102

    Google Scholar 

  • Hotta C, Lembke CG, Domingues DS, Ochoa EA, Cruz GMQ, Melotto-passarin DM, Marconi TG, Santos MO, Mollinari M, Margarido GRA, Crivellari AC, Santos WDD, Souza APD, Hoshino AA, Carrer H, Garcia AAF, Buckeridge MS, Menossi M, Sluys MAV, Souza GM (2010) The biotechnology roadmap for sugarcane improvement. Trop Plant Biol 3(2):75–87

    Article  CAS  Google Scholar 

  • Huh J, Kang B, Nahm S, Ha K, Lee MH, Kim BD (2001) A candidate gene approach identified phytoene synthase as the locus for mature fruit color in red pepper (Capsicum spp). Theor Appl Genet 102:524–530

    Article  CAS  Google Scholar 

  • Iskandar HM, Casu RE, Fletcher AT, Schmidt S, Xu J, Maclean DJ, Manners JM, Bonnett GD (2011) Identification of drought-response genes and a study of their expression during sucrose accumulation and water deficit in sugarcane culms. BMC Plant Biol 11:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson PA (2005) Breeding for improved sugar content in sugarcane. Field Crops Res 92:277–290

    Article  Google Scholar 

  • Jain R, Chandra A, Venugopalan VK, Solomon S (2015) Physiological changes and expression of SOD and P5CS genes in response to water deficit in sugarcane. Sugar Tech 17:276–282

    Article  CAS  Google Scholar 

  • Jangpromma N, Thammasirirak S, Jaisil P, Songsri P (2012) Effects of drought and recovery from drought stress on above ground and root growth, and water use efficiency in sugarcane (Saccharum officinarum L.). Aust J Crop Sci 6:1298–1304

    Google Scholar 

  • JinXian L, YouXiong Q, JinLong G, LiPing X, JiaYun W, YiFeng Z, RuKai C (2009) Molecular cloning of sugarcane late embryogenesis abundant protein gene (LEA) and its expression character. J Agric Biotechnol 17:836–842

    Google Scholar 

  • Kido EA, Neto JRCF, Silva RLDO, Pandolfi V, Guimarães ACR, Veiga DTV, Chabregas MS, Crovella S, Benko-Iseppon AM (2012) New insights in the sugarcane transcriptome responding to drought stress as revealed by supersage. Sci World J, pp 1–14. Article Id 821062

    Google Scholar 

  • Krishnamurthy M (1989) Develpoment of subclonal populations in sugarcane and their genetic and field evaluation for commercial use. Ph.D Thesis, University of South Pacific, Fiji Islands, p 400

    Google Scholar 

  • Kumar T, Uzma KMR, Abbas Z, Ali GM (2014) Genetic improvement of sugarcane for drought and salinity stress tolerance using Arabidopsis vacuolar pyrophosphatase (AVP1) gene. Mol Biotechnol 56(3):199–209

    Article  CAS  PubMed  Google Scholar 

  • Larcher W (2006) Ecofisiologia vegetal. Translation: Prado CHBA, 1st edn. Rima, SAO Carlos

    Google Scholar 

  • Lenka SK, Katiyar A, Chinnusamy V, Bansal KC (2011) Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance. Plant Biotechnol J 9:315–332

    Article  CAS  PubMed  Google Scholar 

  • Lindquist S, Craig E (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  • Lopes MS, Araus JL, Heerden PDRV, Foyer CH (2011) Enhancing drought tolerance in C4 plants. J Exp Bot 62:3135–3153

    Article  CAS  PubMed  Google Scholar 

  • Magwanga RQ, Lu P, Kirungu JN, Lu H, Wang X, Cia X, Zhou Z, Zhang Z, Salih H, Wang K, Liu H (2018) Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genet 19:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mall AK, Misra V (2017) Biotechnological approaches: sustaining sugarcane productivity and yield. In: Bhore S, Marimutchu K, Ravichandran M (eds) Biotechnology for sustainability achievements, challenges and perspectives. Aimst University, Malaysia, pp 387–398. (ISBN- 978-967-14475-3-6; eISBN 978-967-14475-2-9)

    Google Scholar 

  • Mall AK, Misra V, Pathak AD (2017) Outcome of climate change induced drought over sugarcane area, sugar production, sugar recovery and cane crushed in Bihar. Proc Annu Con NISSTA 156–159

    Google Scholar 

  • Mamet LD, Domainque R (1999) Shortening the selection process for sugarcane. Exp Agric 34(4):391–405

    Article  Google Scholar 

  • Marshall A (2014) Drought-tolerant varieties begin global march. Nat Biotechnol 32(4):308

    Article  CAS  Google Scholar 

  • Mastouka S, Garcia AAF, Arizona H (1999) Melhormamenti da Cana-de-acucar. In: Borem. (Org.) Melhoramentode Especies Cultivadas, vol 1. Editora da Universidade Federal de Vicosa, Viscosa, pp 205–252

    Google Scholar 

  • McQualter RB, Dookun-Saumtally A (2007) Expression profiling of abiotic-stress-inducible genes in sugarcane. Proc Aust Soc Sugar Cane Tech 29:878–886

    Google Scholar 

  • Medeiros DB, Silva EC, Santos HRB, Pacheco CM, Musser RS, Nogueira RJMC (2012) Physiological and biochemical response to drought stress in the Barbados cherry. Braz J Plant Physiol 24:181–192

    Article  CAS  Google Scholar 

  • Meinzer FC, Grant DA (1991) Coordination of stomatal, hydraulic and canopy boundary layer properties : do stomata balance conductance by measuring transpiration? Physiol Plant 83:324–329

    Article  Google Scholar 

  • Meinzer FC, Grant DA (1990) Stomatal and hydraulic conductance in growing sugarcane: stomatal conductance in growing sugarcane: stomatal adjustment to water transport capacity. Plant Cell Environ 13:383–388

    Article  Google Scholar 

  • Misra V, Solomon S, Ansari MI (2016) Impact of drought over post-harvest sugarcane crop. Adv Life Sci 5:9496–9505

    Google Scholar 

  • Molinari HBC, Marur CJ, Daros E, Campos MKF, Carvalho JFRP, Bespalhok-Filho JC, Pereira LFP, Vieira LGE (2007) Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.) osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant 130:218–229

    Article  CAS  Google Scholar 

  • Nair NV (2011) Sugarcane varietal development programmes in India: an overview. Sugar Tech 13(4):275–280

    Article  CAS  Google Scholar 

  • Nerkar G, Thorat A, Sheelavanthmath S, Kassa HB, Devarumath R (2018) Genetic transformation of sugarcane and field performance of transgenic sugarcane. In: Gosal SS, Wani SH (eds) Biotechnologies of crop improvement, Transgenic approaches, vol 2. Springer International Publishing, Cham, pp 207–226

    Chapter  Google Scholar 

  • Nepomuceno AL, Neumaier N, Farias JRB, Oya T (2001) Tolerância à seca em plantas: mecanismos fisiológicos e moleculares. Biotecnologia Ciência & Desenvolvimento 23:12–18

    Google Scholar 

  • Nogueira RJMC, Moraes JAPV, Burity HA (2000) Modifications in vapor diffusion resistence of leaves and water relations in Barbados cherry plants under water stress. Pesqui Agropecu Bras 35:1331–1342

    Article  Google Scholar 

  • Nogueira RJMC, Moraes JAPV, Burity HÁ, Bezerra Neto E (2001) Modifications in vapor diffusion resistance of leaves and water relations in Barbados cherry plants under water stress. Rev Bras Fisiol Veg 13:75–87

    Article  Google Scholar 

  • Oki T, Shinjiro K (2006) Global hydrological cycles and world water resources. Science 313:1068–1072

    Article  CAS  PubMed  Google Scholar 

  • Pandey D, Singh SP, Jeena AS, Khan KA, Negi TA, Koujalagi D (2018) Study of genetic variability, heritability and genetic advance for various yield and quality traits in sugarcane genotypes (Saccharum officinarum). Int J Curr Microbiol App Sci 7:1464–1472

    Article  Google Scholar 

  • Paquet L, Rathinasabapathi B, Saini H, Zamir L, Gage DA, Huang ZH, Hanson AD (1994) Accumulation of the compatible solute 3-dimethylsulfoniopropionate in sugarcane and its relatives, but not in other gramineous crops. Aust J Plant Physiol 21:37–48

    CAS  Google Scholar 

  • Parida SK, Kalia SK, Kaul S, Dalal V, Hemaprabha G, Selvi A, Pandit A, Singh A, Gaikwad K, Sharma T, Srivastava PS, Singh NK, Mohapatra T (2009) Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theor Appl Genet 118:327–338

    Article  CAS  PubMed  Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH, Terry N, Sears T, Kim H, Zayed A, Hwang S, van DK, Voogd E, Verwoerd TC, Krutwagen RWHH, Goddijn OJM (1998) Trehalose producing transgenic tobacco plants show improved growth performance under drought stress. J Plant Physiol 152:525–532

    Article  CAS  Google Scholar 

  • Prabu G, Kanwar PG, Pagariya MC, TheerthaPrasad D (2011) Identification of water deficit stress upregulated genes in sugarcane. Plant Mol Biol Report 29(2):291–304

    Article  Google Scholar 

  • Que Q, Elumalai S, Li X, Zhong H, Nalapalli S, Schweiner M, Fei X, Nuccio M, Kelliher T, CZ GW, Chilton M-DM (2014) Maize transformation technology development for commercial event generation. Front Plant Sci 5:37

    Article  Google Scholar 

  • Rao JT (1951) Xeromorphic adaptations in sugarcane for resistance to drought. Proc Intl Soc Sugar Cane Technol 7:82–89

    Google Scholar 

  • Rao KC, Asokan S (1978) Studies on free proline association to drought resistance in sugarcane protoplasts. Plant Sci 82:81–89

    Google Scholar 

  • Roach BT, Daniels J (1987) A review of origin and improvement of sugarcane. In: Proceedings of copersucar international sugarcane breeding workshop, Sao Paulo, pp 1–32

    Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Sek M, Shinozaki K, Yamaguchi Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2A in water stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci U S A 103:18828–18833

    Article  CAS  Google Scholar 

  • Sales C, Marchiori P, Machado R, Fontenele A, Machado E, Silveira J et al (2015) Photosynthetic and antioxidant responses to drought during sugarcane ripening. Photosynthetica 53:547–554

    Article  CAS  Google Scholar 

  • Sanchez AC, Subudhi PK, Rosenow DT, Ngugen HT (2002) Mapping QTLs associated with drought resistance in sorghum (Sorghumbicolor L.Moench). Plant Mol Biol 48:713–726

    Article  CAS  PubMed  Google Scholar 

  • Sathyabhama M, Viswanathan R, Malathi P, Sundar AR (2015) Identification of differentially expressed genes in sugarcane during pathogenesis of Colletotrichum falcatum by suppression subtractive hybridization (SSH). Sugar Tech 18:176–183

    Article  CAS  Google Scholar 

  • Serraj R, Krishnamurthy L, Kashiwagi J, Kumar J, Chandra S, Crouch JH (2004) Variation in root traits of chickpea (Cicer arietinum L.) grown under terminal drought. Field Crop Res 88:115–127

    Article  Google Scholar 

  • Scortecci KC, Creste S, Calsa T, Xavier MA, Landell MGA, Figueira A, Benedito VA (2011) Challeneges opportunities and recent advances in sugarcane breeding. In: Abdurakhmonov I (ed) Plant breeding. Intech, pp 267–296. ISBN 978-953-307-932-5

    Google Scholar 

  • Shaik MM, Hossain MA, Nasiruddin KM (2007) Efficient transformation of stress tolerance GLY gene in transgenic tissue of sugarcane (Saccharum officinarum L.). Mol Biol Biotech J 5(1&2):37–40

    Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus Biologies 331(3):215–225

    Article  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1999) Molecular responses to drought stress. In: Satoh K, Murata N (eds) Stress responses of photosynthetic organisms: molecular mechanisms and molecular regulations. Elsevier, Amsterdam, pp 149–195

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Shukla SK, Sushil SN, Sharma L, Yadav SK, Awasthi SK, Singh GK, Zubair A (2019) AICRP on sugarcane at a Glance. All India Coordinated Research Project on Sugarcane, ICAR-Indian Institute of Sugarcane Research, Lucknow, p 14

    Google Scholar 

  • Silva L, Barbosa JM (2009) Seaweed meal as a protein source for the white shrimp Litopenaeus vannamei. J Appl Phycol 21:193–197

    Article  Google Scholar 

  • Silva MA, Jifon JL, Da Silva JAG, Sharma V (2007) Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Braz J Plant Physiol 19:193–201

    Article  Google Scholar 

  • Silva VP, Almeida FQ, Morgado ED, Rodrigues LM, dos Santos TM, Ventura HT (2010) In situ caecal degradation of roughages in horses. Rev Bras Zootec 39:349–355

    Article  Google Scholar 

  • Simon S, Hemaprabha G (2010) Identification of two new drought specific candidate genes in sugarcane (Saccharum sp). Electronic J Plant Breed 1:1164–1170

    Google Scholar 

  • Singh B, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    Article  CAS  PubMed  Google Scholar 

  • Sleper DA, Poehlman JM (2006) Sugarcane. In: Sleeper DA, Poehlman JM (eds) Breeding field crops, 5th edn. Blackwell Publishing, Ames, p 432

    Google Scholar 

  • Songsri P, Jogloy S, Holbrook CC, Kesmala T, Vorasoot N, Akkasaeng C, Patanothai A (2009) Association of root, specific leaf area and SPAD chlorophyll meter reading to water use efficiency of peanut under different available soil water. Agric Water Manag 96:790–798

    Article  Google Scholar 

  • Sreenivasan TV, Bhagyalakshmi KV (2001) Recently released sugarcane varieties. ICAR Coimbatore Sugarcane Breeding Institute, p 29

    Google Scholar 

  • Tezara W, Driscoll S, Lawlor DW (2008) Partitioning of photosynthetic electron flow between CO2 assimilation and O2 reduction in sunflower plants under water deficit. Photosynthetica 46(1):127–134

    Article  CAS  Google Scholar 

  • Thorup TA, Tanyolac B, Livingstone KD, Papovsky S, Paran I, Jahn M (2000) Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc Natl Acad Sci USA 97:11192–11197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trujillo LE, Sotolongo M, Menéndez C, Ochogavía ME, Coll Y, Hernández I, Borrás-Hidalgo O, Thomma BPHJ, Vera P, Hernández L (2008) SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when over expressed in tobacco plants. Plant Cell Physiol 49:512–525

    Article  CAS  PubMed  Google Scholar 

  • Vantini JS, Dedemo GC, Jovino Gimenez DF, Fonse LFS (2015) Differential gene expression in drought-tolerant sugarcane roots. Genet Mol Res 14:7196–7207

    Article  CAS  PubMed  Google Scholar 

  • Verret JA (1925) A method of handling cane tassels for breeding work. Haw Plant Rec 29:89–94

    Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16(2):123–132

    Article  CAS  PubMed  Google Scholar 

  • Viqueira L, Gomez L, Rodriguez CR (1984) Tolerance of high temperature in sugarcane. II Estimation of the drought tolerance of different varieties. Plant Breed 54:335

    Google Scholar 

  • Wahid A (2004) Analysis of toxic and osmotic effects of sodium chloride on leaf growth and economic yield of sugarcane. Bot Bull- Acad Sinica Taipei 45:133–141

  • Wahid A, Close TJ (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol Plant 51:104–109

    Article  CAS  Google Scholar 

  • Waltz E (2014) Beating the heat. Nat Biotech 32(7):610–661

    Article  CAS  Google Scholar 

  • Wingler A, Fritzius T, Wiemken A, Boller T, Aeschbacher RA (2000) Trehalose induced the ADP glucose pyrophosphorylase gene ApL3 and starch synthesis in Arabidopsis. Plant Physiol 124:105–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SZ, Yang BP, Feng CL, Chen RK, Luo JP, Cai WW, Liu FH (2006) Expression of the Grifola frondosa trehalose synthase gene and improvement of drought-tolerance in sugarcane (Saccharum officinarum L). J Integr Plant Biol 48:453–459

    Article  CAS  Google Scholar 

  • Zhao D, Li YR (2015) Climate change and sugarcane production: potential impact and mitigation strategies. Int J Agron 2015:1–10. (Article Id 547386). https://doi.org/10.1155/2015/547386

    Article  CAS  Google Scholar 

  • Zingaretti SM, Rodrigues FA, Graça JPD, Pereira LDP, Lourenço MV (2012) Sugarcane responses at water deficit conditions. In: Rahman IMM (ed) Water stress. Intech Open, pp 255–276. ISBN 978-953-307-963-9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Mall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mall, A.K., Misra, V., Singh, B.D., Kumar, M., Pathak, A.D. (2020). Drought Tolerance: Breeding Efforts in Sugarcane. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-0025-1_10

Download citation

Publish with us

Policies and ethics