Skip to main content

Electron–Molecule Resonances: Current Developments

  • Conference paper
  • First Online:
Quantum Collisions and Confinement of Atomic and Molecular Species, and Photons

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 230))

Abstract

Electron–molecule resonances, which are short-lived excited states of molecular negative ions, have attracted increasing attention in recent times due to their complex dynamics as well as their role in wide variety of practical applications. Formation and decay of the resonance is the most efficient way of converting kinetic energy into chemical energy in a medium through the creation of vibrationally or electronically excited states, radicals and negative ions—all of which are chemically very active. It has been found that the energy specificity of this process allows chemical control by bond selective fragmentation of organic molecules. Though diverse experimental techniques have been used to study the resonances over the last few decades, recent advances have provided several new insights into the dynamics of these species. This review would provide a short overview of the role of these resonances in various areas of science and technology followed by some of the significant findings in recent times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schulz, G.J.: Resonances in electron impact on diatomic molecules. Rev. Mod. Phys. 45(3), 423–486 (1973)

    Article  ADS  Google Scholar 

  2. Christophorou, L. (ed.): Electron-molecule Interactions and Their Applications, vol. 1. Academic Press, New York (1984)

    Google Scholar 

  3. Illenberger, E., Momigny, J.: Gaseous Molecular Ions: An Introduction to Elementary Processes Induced by Ionization. Springer (1992)

    Google Scholar 

  4. Fabrikant, I.I., Eden, S., Mason, N.J., Fedor, J.: Recent progress in dissociative electron attachment: from diatomics to biolmolecules. Adv. At. Mol. Opt. Phys. 66, 545–657 (2017)

    Article  Google Scholar 

  5. Davis, D., Vysotskiy, V.P., Sajeev, Y., Cederbaum, L.S.: Electron impact catalytic dissociation: two-bond breaking by a low-energy catalytic electron. Angew. Chem. Int. Ed. 50(18), 4119–4122 (2011)

    Article  Google Scholar 

  6. Davis, D., Vysotskiy, V.P., Sajeev, Y., Cederbaum, L.S.: A one-step four-bond-breaking reaction catalysed by an electron. Angew. Chem. Int. Ed. 51(32), 8003–8007 (2012)

    Article  Google Scholar 

  7. O’Malley, T.F.: Theory of dissociative attachment. Phys. Rev. 150(1), 14–29 (1966)

    Article  ADS  Google Scholar 

  8. Allan, M., Wong, S.F.: Effect of vibrational and rotational excitation on dissociative attachment in hydrogen. Phys. Rev. Lett. 41, 1791–1794 (1978)

    Article  ADS  Google Scholar 

  9. Hall, R.I., Čadež, I., Landau, M., Pichou, F., Schermann, C.: Vibrational excitation of hydrogen via recombinative desorption of atomic hydrogen gas on a metal surface. Phys. Rev. Lett. 60(4), 337–340 (1988)

    Article  ADS  Google Scholar 

  10. Krishnakumar, E., Denifl, S., Čadež, I., Markelj, S., Mason, N.J.: Dissociative electron attachment cross section for H2 and D2. Phys. Rev. Lett. 106(24), 243201 (4 p) (2011)

    Google Scholar 

  11. Sajeev, Y.: Cycloaddition of molecular dinitrogens: formation of tetrazete anion (N4; D2h) through associative electron attachment. Chem. Phys. 117(15–16), 2162–2166 (2019)

    Article  ADS  Google Scholar 

  12. Christophorou, L. (ed.): Electron-molecule interactions and their applications, vol. 2. Academic Press, New York (1984)

    Google Scholar 

  13. Boudaiffa, B., Cloutier, P., Hunting, D., Huels, M.A., Sanche, L.: Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287(5458), 1658–1660 (2000)

    Article  ADS  Google Scholar 

  14. Martel, R., Avouris, P., Lyo, I.-W.: Molecularly adsorbed oxygen species on Si(111)-(7×7): STM-induced dissociative attachment studies. Science 272(5260), 385–388 (1996)

    Article  ADS  Google Scholar 

  15. Boyer, M.C., Rivas, N., Tran, A.A., Verish, C.A., Arumainayagam, C.R.: The role of low-energy (≤20 eV) electrons in astrochemistry. Surf. Sci. 652, 26–32 (2016)

    Article  ADS  Google Scholar 

  16. Takatsuka, K., McKoy, V.: Extension of the Schwinger variational principle beyond the static-exchange approximation. Phys. Rev. A 24(5), 2473–2480 (1981)

    Article  ADS  Google Scholar 

  17. da Costa, R.F., Varella, M.T. do N., Bettega, M.H.F., Lima, M.P.A.: Recent advances in the application of the Schwinger multichannel method with pseudopotentials to electron-molecule collisions. Eur. Phys. J. D 69, 159 (2015)

    Google Scholar 

  18. Lane, N.F.: The theory of electron-molecule collisions. Rev. Mod. Phys. 52(1), 29–119 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  19. Tennyson, J.: Electron-molecule collision calculations using the R-matrix method. Phys. Rep. 491(2–3), 29–76 (2010)

    Article  ADS  Google Scholar 

  20. Fabrikant, I.I.: Recent progress in theory of dissociative attachment: from diatomics to biomolecules. J. Phys. Conf. Ser. 204, 012004 (2010)

    Google Scholar 

  21. Domcke, W.: Theory of resonance and threshold effects in electron-molecule collisions: the projection-operator approach. Phys. Rep. 208(2), 97–188 (1991)

    Article  ADS  Google Scholar 

  22. Fabrikant, I.: Quasiclassical R-matrix theory of inelastic processes in collisions of electrons with HCl molecules. Phys. Rev. A 43(7), 3478–3486 (1991)

    Article  ADS  Google Scholar 

  23. Haxton, D.J., Zhang, Z., McCurdy, C.W., Rescigno, T.N.: Complex potential surface for the 2B1 metastable state of the water anion. Phys. Rev. A 69(6), 062713 (11 p) (2004)

    Google Scholar 

  24. Haxton, D.J., Zhang, Z., Meyer, H.-D., Rescigno, T.N., McCurdy, C.W.: Dynamics of dissociative attachment of electron to water through the 2B1 metastable state of the anion. Phys. Rev. A 69(6), 062714 (16 p) (2004)

    Google Scholar 

  25. Santra, R., Cederbaum, L.: Non-Hermitian electronic theory and applications to clusters. Phys. Rep. 368(1), 1–117 (2002)

    Article  ADS  Google Scholar 

  26. Aguilar, J., Combes, J.M.: A class of analytic perturbations for one-body Schrodinger Hamiltonians. Commun. Math. Phys. 22(4), 269–279 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Sajeev, Y., Vysotskiy, V., Cederbaum, L.S., Moiseyev, N.: Continuum remover-complex absorbing potential: efficient removal of the nonphysical stabilization points. J. Chem. Phys. 131(2), 211102 (4 p) (2009)

    Article  ADS  Google Scholar 

  28. Sajeev, Y.: Real-valued continuum remover potential: an improved L2-stabilization method for the chemistry of electronic resonance states. Chem. Phys. Lett. 587, 105–112 (2013)

    Article  ADS  Google Scholar 

  29. Prabhudesai, V.S., Tadsare, V., Ghosh, S., Gope, K., Davis, D., Krishnakumar, E.: Dissociative electron attachment studies on acetone. J. Chem. Phys. 141(16), 164320 (7 p) (2014)

    Article  ADS  Google Scholar 

  30. Haxton, D.J., McCurdy, C.W., Rescigno, T.N.: Angular dependence of dissociative electron attachment to polyatomic molecules: application to the 2B1 metastable state of the H2O and H2S anions. Phys. Rev. A 73(6), 062724 (15 p) (2006)

    Google Scholar 

  31. Adaniya, H., Rudek, B., Osipov, T., Haxton, D.J., Weber, T., Rescigno, T.N., McCurdy, C.W., Belkacem, A.: Imaging the molecular dynamics of dissociative electron attachment to water. Phys. Rev. Lett. 103(23), 233201 (4 p) (2009)

    Google Scholar 

  32. O’Malley, T.F., Taylor, H.S.: Angular dependence of scattering products in electron-molecule resonant excitation and in dissociative attachment. Phys. Rev. 176(1), 207–221 (1968)

    Article  ADS  Google Scholar 

  33. Azria, R., Coat, Y.L., Lefevre, G., Simon, D.: Dissociative electron attachment on H2S: energy and angular distributions of H ions. J. Phys. B At. Mol. Phys. 12, 679–687 (1979)

    Article  ADS  Google Scholar 

  34. Ram, N.B., Prabhudesai, V.S.., Krishnakumar, E.: Comment on “Imaging the molecular dynamics of dissociative electron attachment to water.” Phys. Rev. Lett. 106(4), 049301 (1 p) (2011)

    Google Scholar 

  35. Hotop, H., Ruf, M.-W., Allan, M., Fabrikant, I.I.: Resonance and threshold phenomena in low-energy electron collisions with molecules and clusters. Adv. At. Mol. Opt. Phys. 49, 86–216 (2003)

    ADS  Google Scholar 

  36. Krishnakumar, E., Nagesha, K.: Dissociative attachment of electrons to CS2. J. Phys. B At. Mol. Opt. Phys. 25(7), 1645–1660 (1992)

    Article  ADS  Google Scholar 

  37. Srivastava, S.K., Chutjian, A., Trajmar, S.: Absolute elastic differential electron scattering cross sections in the intermediate energy region. I. H2. J. Chem. Phys. 63(6), 2659–2665 (1975)

    Article  ADS  Google Scholar 

  38. Van Brunt, R.J., Kieffer, L.J.: Angular distribution of O from dissociative electron attachment to O2. Phys. Rev. A 2(5), 1899–1905 (1970)

    Article  ADS  Google Scholar 

  39. Cadez, I., Tronc, M., Hall, R.I.: Dissociative electron attachment in CO: angular distribution of the O ions. J. Phys. B 8(5), L73–L76 (1975)

    Article  ADS  Google Scholar 

  40. Nandi, D., Prabhudesai, V.S., Krishnakumar, E., Chatterjee, A.: Velocity slice imaging for dissociative electron attachment. Rev. Sci. Instrum. 76(5), 053107 (8 p) (2005)

    Article  ADS  Google Scholar 

  41. Prabhudesai, V.S., Nandi, D., Krishnakumar, E.: On the presence of the 4Σ u resonance in dissociative electron attachment to O2. J. Phys. B At. Mol. Opt. Phys. 39(14), L277–L283 (2006)

    Article  ADS  Google Scholar 

  42. Gope, K., Prabhudesai, V.S., Mason, N.J., Krishnakumar, E.: Probing the resonant states of Cl2 using velocity slice imaging. J. Phys. B At. Mol. Opt. Phys. 49(1), 015201 (9 p) (2016)

    Article  ADS  Google Scholar 

  43. Ómarsson, F.H., Szymanska, E., Mason, N.J., Krishnakumar, E., Ingólfsson, O.: Quantum superposition of target and product states in reactive electron scattering from CF4 revealed through velocity slice imaging. Phys. Rev. Lett. 111(6), 063201 (4 p) (2013)

    Google Scholar 

  44. Krishnakumar, E., Prabhudesai, V.S., Mason, N.J.: Symmetry breaking by quantum coherence in single electron attachment. Nat. Phys. 14, 149–153 (2018)

    Article  Google Scholar 

  45. Eppink, A.T.J.B., Parker, D.H.: Velocity map imaging of ions and electrons using electrostatic lenses: application to photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68(9), 3477–3484 (1997)

    Article  ADS  Google Scholar 

  46. Gebhardt, C.R., Rakitzis, T.P., Samartzis, P.C., Ladopoulos, V., Kitsopoulos, T.N.: Slice imaging: a new approach to ion imaging and velocity mapping. Rev. Sci. Instrum. 72(10), 3848–3453 (2001)

    Article  ADS  Google Scholar 

  47. Adaniya, H., Slaughter, D.S., Osipov, T., Weber, T., Belkacem, A.: A momentum imaging microscope for dissociative electron attachment. Rev. Sci. Instrum. 83(2), 023106 (2012)

    Article  ADS  Google Scholar 

  48. Wu, B., Xia, L., Li, H.-K., Zeng, X.-J., Tian, S.X.: Positive/negative ion velocity mapping apparatus for electron molecule reactions. Rev. Sci. Instrum. 83(1), 013108 (2012)

    Article  ADS  Google Scholar 

  49. Moradmand, A., Williams, A., Landers, A.L., Fogle, M.: Momentum-imaging apparatus for the study of dissociative electron attachment dynamics. Rev. Sci. Instrum. 84(3), 033104 (2013)

    Article  ADS  Google Scholar 

  50. Szyman´ska. E., Prabhudesai, V.S., Mason, N.J., Krishnakumar, E.: Dissociative electron attachment to acetaldehyde, CH3CHO: a laboratory study using the velocity map imaging technique. Phys. Chem. Chem. Phys. 15(3), 998–1005 (2013)

    Article  Google Scholar 

  51. Nag, P., Nandi, D.: Dissociation dynamics in the dissociative electron attachment to carbon dioxide. Phys. Rev. A 91(5), 052705 (7 p) (2015)

    Google Scholar 

  52. Rescigno, T.N., Trevisan, C.S., Orel, A.E., Slaughter, D.S., Adaniya, H., Belkacem, A., Weyland, M., Dorn, A., McCurdy, C.W.: Dynamics of dissociative electron attachment to ammonia. Phys. Rev. A 93(5), 052704 (10 p) (2016)

    Google Scholar 

  53. Tanner, D.J., Rice, S.A.: Coherent control of selectivity of chemical reaction via control of wave packet evolution. J. Chem. Phys. 83(10), 5013–5018 (1985)

    Article  ADS  Google Scholar 

  54. Potter, E.D., Herek, J.L., Pedersen, S., Liu, Q., Zewail, A.H.: Femtosecond laser control of a chemical reaction. Nature 355, 66–68 (1992)

    Article  ADS  Google Scholar 

  55. Rabitz, H., de Vivie-Riedle, R., Motzkus, M., Kompa, K.: Whither the future of controlling quantum phenomena? Science 288(5467), 824–828 (2000)

    Article  ADS  Google Scholar 

  56. Krishnakumar, E.: J. Phys. Conf. Ser. 185, 012022 (8 p) (2009)

    Google Scholar 

  57. Mason, N.J.: Electron-induced chemistry: a forward look. Int. J. Mass Spectrom. 277(1–3), 31–34 (2008)

    Article  Google Scholar 

  58. Illenberger, E.: Electron-attachment reactions in molecular clusters. Chem. Rev. 92(7), 1589–1609 (1992)

    Article  Google Scholar 

  59. Aflatooni, K., Burrow, P.D.: Dissociative electron attachment in chlorofluoromethane and the correlation with vertical attachment energies. Int. J. Mass Spectrom. 205(1–3), 149–161 (2001)

    Article  Google Scholar 

  60. Balog, R., Illenberger, E.: Complete chemical transformation of a molecular film by subexcitation electrons (<3 eV). Phys. Rev. Lett. 91(21), 213201 (4 p) (2003)

    Google Scholar 

  61. Abdul–Carime, H., Gohlke, S., Illenberger, E.: Site-specific dissociation of DNA bases by slow electrons at early stages of irradiation. Phys. Rev. Lett. 92(16), 168103 (4 p) (2004)

    Google Scholar 

  62. Prabhudesai, V.S., Kelkar, A.H., Nandi, D., Krishnakumar, E.: Functional group dependent site specific fragmentation of molecules by low energy electrons. Phys. Rev. Lett. 95(14), 143202 (4 p) (2005)

    Google Scholar 

  63. Prabhudesai, V.S., Kelkar, A.H., Nandi, D., Krishnakumar, E.: Functional group dependent dissociative electron attachment to simple organic molecules. J. Chem. Phys. 128(15), 154309 (7 p) (2008)

    Article  ADS  Google Scholar 

  64. Ómarsson, F.H., Mason, N.J., Krishnakumar, E., Ingólfsson, O.: State selectivity and dynamics in dissociative electron attachment to CF3I revealed through velocity slice imaging. Angew. Chem. Int. Ed. 53(45), 12051–12054 (2014)

    Article  Google Scholar 

  65. Gedanken, A.: The magnetic circular dichroism of the A band in CF3I, C2H5I and t-BuI. Chem. Phys. Lett. 137(5), 462–466 (1987)

    Article  ADS  Google Scholar 

  66. Oster, T., Ingolfsson, O., Meinke, M., Jaffke, T., Illenberger, E.: Anion formation from gaseous and condensed CF3I on low energy electron impact. J. Chem. Phys. 99(7), 5141–5150 (1993) (and references therein)

    Article  ADS  Google Scholar 

  67. Christophorou, L.G., Olthoff, J.K., Rao, M.V.V.S.: Electron interactions with CF4. J. Phys. Chem. Ref. Data 25(5), 1341–1388 (1996)

    Article  ADS  Google Scholar 

  68. Christophorou, L.G., Olthoff, J.K.: Electron interactions with plasma processing gases: an update for CF4, CHF3, C2F6, and C3F8. J. Phys. Chem. Ref. Data 28(4), 967–982 (1999)

    Article  ADS  Google Scholar 

  69. Iga, I., Rao, M., Srivastava, S.K., Nogueira, J.C.: Formation of negative ions by electron impact on SiF4 and CF4. Z. Phys. D 24(2), 111–115 (1992)

    Article  ADS  Google Scholar 

  70. Mckinlay, R.G., Z¨ure, J.M., Paterson, M.J.: Vibronic coupling in inorganic systems. Photochemistry, conical intersections, and the Jahn-Teller and pseudo-Jahn-Teller effects. Adv. Inorg. Chem. 62, 351–390 (2010)

    Google Scholar 

  71. Ram, N.B., Krishnakumar, E.: Dissociative electron attachment to methane probed using velocity slice imaging. Chem. Phys. Lett. 511(1–3), 22–27 (2011)

    Article  ADS  Google Scholar 

  72. Ómarsson, F.H., Szymanska, E., Mason, N.J., Krishnakumar, E., Ingólfsson, O.: Velocity slice imaging study on dissociative electron attachment to CF4. Eur. Phys. J. D 68(8), 101 (2014)

    Article  ADS  Google Scholar 

  73. Chantry, P.J.: Dissociative attachment in carbon dioxide. J. Chem. Phys. 57(8), 3180–3186 (1972)

    Article  ADS  Google Scholar 

  74. Spence, D., Schulz, G.J.: Cross section for production of O2 and C by dissociative electron attachment in CO2: an observation the Renner-Teller effect. J. Chem. Phys. 60(1), 216–220 (1974)

    Article  ADS  Google Scholar 

  75. Wu, B., Xia, L., Wang, Y.-F., Li, H.-K., Zeng, X.-J., Tian, S.X.: Renner-Teller effect on dissociative electron attachment to carbon dioxide. Phys. Rev. A 85(5), 052709 (2012)

    Article  ADS  Google Scholar 

  76. Moradmand, A., Slaughter, D.S., Haxton, D.J., Rescigno, T.N., McCurdy, C.W., Weber, Th, Matsika, S., Landers, A.L., Belkacem, A., Fogle, M.: Dissociative electron attachment to carbon dioxide via the 2Πg shape resonance. Phys. Rev. A 88(3), 032703 (2013)

    Article  ADS  Google Scholar 

  77. Wang, X.-D., Gao, X.-F., Xuan, C.-J., Tian, S.X.: Dissociative electron attachment to CO2 produces molecular oxygen. Nat. Chem. 8, 258–263 (2016)

    Article  Google Scholar 

  78. Holland, H.D.: The oxygenation of the atmosphere and oceans. Phil. Trans. R. Soc. B 361, 903–915 (2006)

    Article  Google Scholar 

  79. Lu, Z., Chang, Y.C., Yin, Q.-Z., Ng, C.Y., Jackson, W.M.: Evidence for direct molecular oxygen production in CO2 photodissociation. Science 346(6205), 61–64 (2014)

    Article  ADS  Google Scholar 

  80. Weingartshofer, A., Ehrhardt, H., Hermann, V., Linder, F.: Measurements of absolute cross sections for (e, H2) collision processes: formation and decay of H2 resonances. Phys. Rev. A 2(2), 204–304 (1970)

    Article  ADS  Google Scholar 

  81. Davis, D., Kundu, S., Prabhudesai, V.S., Sajeev, Y. Krishnakumar, E.: Formation of CO2 from formic acid through catalytic electron channel. J Chem. Phys. 149(6), 064308 (8 p) (2018)

    Article  ADS  Google Scholar 

  82. Li, Z., Milosavljević, A.R., Carmichael, I., Ptasinska, S.: Characterization of neutral radicals from a dissociative electron attachment process. Phys. Rev. Lett. 119(5), 053402 (5 p) (2017)

    Google Scholar 

  83. Külz, M., Keil, M., Kortyna, A., Schellhaa, B., Hauck, J., Bergmann, K., Meyer, W., Weyh, D.: Dissociative attachment of low-energy electrons to state-selected diatomic molecules. Phys. Rev. A 53(5), 3324 (1996)

    Article  ADS  Google Scholar 

  84. Christophorou, L.G., Olthoff, J.K.: Electron interactions with excited atoms and molecules. Adv. At. Mol. Opt. Phy. 44, 155–293 (2000)

    Article  ADS  Google Scholar 

  85. Krishnakumar, E., Kumar, S.V.K., Rangwala, S.A., Mitra, S.K.: Cross sections for dissociative attachment of excited and ground electronic states of SO2. Phys. Rev. A 56(3), 1945–1953 (1997)

    Article  ADS  Google Scholar 

  86. Krishnakumar, E., Kumar, S.V.K., Rangwala, S.A., Mitra, S.K.: Excited state dissociative attachment and couplings of electronic states of SO2. J. Phys. B At. Mol. Opt. Phys. 29(17), L657–L665 (1996)

    Article  ADS  Google Scholar 

  87. Rangwala, S.A., Kumar S.V.K., Krishnakumar, E.: Dissociative electron attachment to electronically excited CS2. Phys. Rev. A 64(1), 012707 (5 p) (2001)

    Google Scholar 

  88. Kumar, S.V.K., Ashoka, V.S., Krishnakumar, E.: Dissociative attachment of electrons to vibronically excited SO2. Phys. Rev. A 70(5), 052715 (7 p) (2004)

    Google Scholar 

  89. Bald, I., Langer, J., Tegeder, P., Ingolfsson, O.: From isolated molecules through clusters and condensates to the building blocks of life. Int. J. Mass Spectrum. 277(1–3), 4–25 (2008)

    Article  Google Scholar 

  90. Rosa, A., Barszczewska, W., Nandi, D., Ashoka, V.S., Kumar, S.V.K., Krishnakumar, E., Bruning, F., Illenberger, E.: Unusual temperature dependence in dissociative electron attachment to 1,4-chlorobromobenzene. Chem. Phys. Lett. 342(5–6), 536–544 (2001)

    Article  ADS  Google Scholar 

  91. Haughey, S.A., Field, T.A., Langer, J., Shuman, N.S., Miller, T.M., Friedman, J.F., Viggiano, A.A.: Dissociative electron attachment to C2F5 radicals. J. Chem. Phys. 137(5), 054310 (8 p) (2012)

    Google Scholar 

  92. Varambhia, H.N., Faure, A., Graupner, K., Field, T., Tennyson, J.: Experimental observation of dissociative electron attachment to S2O and S2O2 with a new spectrometer for unstable molecules. Mon. Not. R. Astron. Soc. 403(3), 1409–1412 (2010)

    Article  ADS  Google Scholar 

  93. Field, T., Slattery, A.E., Adams, D.J., Morrison, D.D.: Experimental observation of dissociative electron attachment to S2O and S2O2 with a new spectrometer for unstable molecules. J. Phys. B At. Mol. Opt. Phys. 38(3), 255–264 (2005)

    Article  ADS  Google Scholar 

  94. Vitanov, N.V., Halfmann, T., Shore, B.W., Bergmann, K.: Laser-induced population transfer by adiabatic passage techniques. Annu. Rev. Phys. Chem. 52, 763–809 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

E.K. acknowledges the Raja Ramanna Fellowship. V. S. P. acknowledges funding from Dept. of Atomic Energy, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Krishnakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krishnakumar, E., Prabhudesai, V.S. (2019). Electron–Molecule Resonances: Current Developments. In: Deshmukh, P., Krishnakumar, E., Fritzsche, S., Krishnamurthy, M., Majumder, S. (eds) Quantum Collisions and Confinement of Atomic and Molecular Species, and Photons. Springer Proceedings in Physics, vol 230. Springer, Singapore. https://doi.org/10.1007/978-981-13-9969-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9969-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9968-8

  • Online ISBN: 978-981-13-9969-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics