Forcing a Model of Harrington’s Principle Without Reshaping

  • Yong ChengEmail author
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)


In this chapter, we establish the following main result: assuming there exists a remarkable cardinal with a weakly inaccessible cardinal above it, we can force a set model of \(\mathsf{Z_3} + \mathsf{HP}\) via set forcing without the use of the reshaping technique.


  1. 1.
    Beller, A., Jensen, R.B., Welch, P.: Coding the Universe. Cambridge University Press, Cambridge (1982)CrossRefGoogle Scholar
  2. 2.
    Cheng, Y.: Analysis of Martin-Harrington theorem in higher-order arithmetic. Ph.D. thesis, National University of Singapore (2012)Google Scholar
  3. 3.
    Baumgartner, J.: Applications of the Proper Forcing Axiom. Handbook of set-theoretic topology (Kunen, K., Vaughan, J.E.), North-Holland, Amsterdam, pp. 913–959 (1984)CrossRefGoogle Scholar
  4. 4.
    Jech, T.J.: Set Theory. Third Millennium Edition, revised and expanded. Springer, Berlin (2003)Google Scholar
  5. 5.
    Schindler, R.: Remarkable cardinals. Infinity, Computability, and Metamathematics (Geschke et al., Eds.), Festschrift celebrating the 60th birthdays of Peter Koepke and Philip Welch, pp. 299–308Google Scholar
  6. 6.
    Woodin, W.H.: Personal communication with WoodinGoogle Scholar
  7. 7.
    Schindler, R.: Proper forcing and remarkable cardinals II., : Schindler, Ralf. J. Symb. Log. 66, 1481–1492 (2001)Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of PhilosophyWuhan UniversityWuhanChina

Personalised recommendations