Advertisement

Network Motifs: A Survey

  • Deepali Jain
  • Ripon PatgiriEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1046)

Abstract

Network motifs are the building blocks of complex networks. Studying these frequently occurring patterns disclose a lot of information about these networks. The applications of Network motifs are very much evident now-a-days, in almost every field including biological networks, World Wide Web (WWW), etc. Some of the important motifs are feed forward loops, bi-fan, bi-parallel, fully connected triads. But, discovering these motifs is a computationally challenging task. In this paper, various techniques that are used to discover motifs are presented, along with detailed discussions on several issues and challenges in this area.

Keywords

Complex networks Motifs Network motifs Big graph Biological networks 

Notes

Acknowledgement

Authors would like to acknowledge TEQIP-III, NIT Silchar for supporting this research work.

References

  1. 1.
    Alon: The S.cerevisiae database. https://www.weizmann.ac.il/mcb/UriAlon/
  2. 2.
    Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8(6), 450 (2007)CrossRefGoogle Scholar
  3. 3.
    Batagelj, V., Mrvar, A.: Pajek datasets. https://www.kegg.jp/
  4. 4.
    Bu, D., et al.: Topological structure analysis of the protein–protein interaction network in budding yeast. Nucleic Acids Res. 31(9), 2443–2450 (2003)CrossRefGoogle Scholar
  5. 5.
    Buhler, J., Tompa, M.: Finding motifs using random projections. J. Comput. Biol. 9(2), 225–242 (2002)CrossRefGoogle Scholar
  6. 6.
    Chen, J., Hsu, W., Lee, M.L., Ng, S.-K.: Labeling network motifs in protein interactomes for protein function prediction. In: IEEE 23rd International Conference on Data Engineering, ICDE 2007, pp. 546–555. IEEE (2007)Google Scholar
  7. 7.
    Chen, L., et al.: Identification of breast cancer patients based on human signaling network motifs. Sci. Rep. 3, 3368 (2013)CrossRefGoogle Scholar
  8. 8.
    Ferreira, R., Grossi, R., Rizzi, R.: Output-sensitive listing of bounded-size trees in undirected graphs. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 275–286. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23719-5_24CrossRefGoogle Scholar
  9. 9.
    Grochow, J.A., Kellis, M.: Network Motif discovery using subgraph enumeration and symmetry-breaking. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS, vol. 4453, pp. 92–106. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71681-5_7CrossRefGoogle Scholar
  10. 10.
    Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)CrossRefGoogle Scholar
  11. 11.
    Jin, G., Zhang, S., Zhang, X.-S., Chen, L.: Hubs with network motifs organize modularity dynamically in the protein-protein interaction network of yeast. PLoS ONE 2(11), e1207 (2007)CrossRefGoogle Scholar
  12. 12.
    Kashani, Z.R.M., et al.: Kavosh: a new algorithm for finding network motifs. BMC Bioinform. 10(1), 318 (2009)CrossRefGoogle Scholar
  13. 13.
    Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20(11), 1746–1758 (2004)CrossRefGoogle Scholar
  14. 14.
    KEGG: KEGG: Kyoto encyclopedia of genes and genomes. https://www.kegg.jp/
  15. 15.
    Khakabimamaghani, S., Sharafuddin, I., Dichter, N., Koch, I., Masoudi-Nejad, A.: QuateXelero: an accelerated exact network motif detection algorithm. PLoS ONE 8(7), e68073 (2013)CrossRefGoogle Scholar
  16. 16.
    Kim, M.-S., Kim, J.-R., Kim, D., Lander, A.D., Cho, K.-H.: Spatiotemporal network motif reveals the biological traits of developmental gene regulatory networks in drosophila melanogaster. BMC Syst. Biol. 6(1), 31 (2012)CrossRefGoogle Scholar
  17. 17.
    Kim, W., Li, M., Wang, J., Pan, Y.: Biological network motif detection and evaluation. BMC Syst. Biol. 5(3), S5 (2011)CrossRefGoogle Scholar
  18. 18.
    Kovanen, L., Kaski, K., Kertész, J., Saramäki, J.: Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences. Proc. Natl. Acad. Sci. 110, 18070–18075 (2013)CrossRefGoogle Scholar
  19. 19.
    Li, G., Luo, J., Xiao, Z., Liang, C.: MTMO: an efficient network-centric algorithm for subtree counting and enumeration. Quant. Biol. 6(2), 142–154 (2018)CrossRefGoogle Scholar
  20. 20.
    Lin, W., Xiao, X., Xie, X., Li, X.-L.: Network motif discovery: A GPU approach. IEEE Trans. Knowl. Data Eng. 29(3), 513–528 (2017)CrossRefGoogle Scholar
  21. 21.
    Liu, B., Li, J., Chen, C., Tan, W., Chen, Q., Zhou, M.: Efficient motif discovery for large-scale time series in healthcare. IEEE Trans. Industr. Inf. 11(3), 583–590 (2015)CrossRefGoogle Scholar
  22. 22.
    Lonardi, J., Patel, P.: Finding motifs in time series. In: Proceedings of the 2nd Workshop on Temporal Data Mining, pp. 53–68 (2002)Google Scholar
  23. 23.
    Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)CrossRefGoogle Scholar
  24. 24.
    Madar, D., Dekel, E., Bren, A., Alon, U.: Negative auto-regulation increases the input dynamic-range of the arabinose system of escherichia coli. BMC Syst. Biol. 5(1), 111 (2011)CrossRefGoogle Scholar
  25. 25.
    McKay, B.D., et al.: Practical graph isomorphism. Vanderbilt University, Nashville (1981)zbMATHGoogle Scholar
  26. 26.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Net-work motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)CrossRefGoogle Scholar
  27. 27.
    Mueen, A., Keogh, E., Zhu, Q., Cash, S., Westover, B.: Exact discovery of time series motifs. In: Proceedings of the 2009 SIAM International Conference on Data Mining, pp. 473–484. SIAM (2009)Google Scholar
  28. 28.
    Newman: Newman Mark network data (2009). http://www-personal.umich.edu/
  29. 29.
    Omidi, S., Schreiber, F., Masoudi-Nejad, A.: MODA: an efficient algorithm for net-work motif discovery in biological networks. Genes Genet. Syst. 84(5), 385–395 (2009)CrossRefGoogle Scholar
  30. 30.
    Ribeiro, P., Silva, F.: G-tries: an efficient data structure for discovering network motifs. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 1559–1566. ACM (2010)Google Scholar
  31. 31.
    Saha, T.K., Hasan, M.A.: Finding network motifs using MCMC sampling. In: Mangioni, G., Simini, F., Uzzo, S.M., Wang, D. (eds.) Complex Networks VI. SCI, vol. 597, pp. 13–24. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16112-9_2CrossRefGoogle Scholar
  32. 32.
    Schreiber, F., Schwobbermeyer, H.: MAVisto: a tool for the exploration of network motifs. Bioinformatics 21(17), 3572–3574 (2005)CrossRefGoogle Scholar
  33. 33.
    Shoval, O., Alon, U.: SnapShot: network motifs. Cell 143(2), 326 (2010)CrossRefGoogle Scholar
  34. 34.
    Slota, G.M., Madduri, K.: Fast approximate subgraph counting and enumeration. In: 2013 42nd International Conference on Parallel Processing (ICPP), pp. 210–219. IEEE (2013)Google Scholar
  35. 35.
    Turkett, W., Fulp, E., Lever, C., Allan, J.E.: Graph mining of motif profiles for computer network activity inference. In: Ninth Workshop on Mining and Learning with Graphs (2011)Google Scholar
  36. 36.
    Wernicke, S.: A faster algorithm for detecting network motifs. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS, vol. 3692, pp. 165–177. Springer, Heidelberg (2005).  https://doi.org/10.1007/11557067_14CrossRefGoogle Scholar
  37. 37.
    Wernicke, S.: Efficient detection of network motifs. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 3(4), 347–359 (2006)CrossRefGoogle Scholar
  38. 38.
    Wernicke, S., Rasche, F.: FANMOD: a tool for fast network motif detection. Bioinformatics 22(9), 1152–1153 (2006)CrossRefGoogle Scholar
  39. 39.
    Wong, E., Baur, B., Quader, S., Huang, C.-H.: Biological network motif detection: principles and practice. Brief. Bioinform. 13(2), 202–215 (2011)CrossRefGoogle Scholar
  40. 40.
    Yeger-Lotem, E., et al.: Network motifs in integrated cellular networks of transcription–regulation and protein–protein interaction. Proc. Natl. Acad. Sci. 101(16), 5934–5939 (2004)CrossRefGoogle Scholar
  41. 41.
    Zeng, T., Semiari, O., Saad, W.: Spatio-temporal motifs for optimized vehicle-to-vehicle (v2v) communications. In: 2018 International Conference on Computing, Networking and Communications (ICNC), pp. 789–794, March 2018Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.National Institute of Technology SilcharSilcharIndia

Personalised recommendations