Skip to main content

Network Motifs: A Survey

  • Conference paper
  • First Online:
Book cover Advances in Computing and Data Sciences (ICACDS 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1046))

Included in the following conference series:

Abstract

Network motifs are the building blocks of complex networks. Studying these frequently occurring patterns disclose a lot of information about these networks. The applications of Network motifs are very much evident now-a-days, in almost every field including biological networks, World Wide Web (WWW), etc. Some of the important motifs are feed forward loops, bi-fan, bi-parallel, fully connected triads. But, discovering these motifs is a computationally challenging task. In this paper, various techniques that are used to discover motifs are presented, along with detailed discussions on several issues and challenges in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alon: The S.cerevisiae database. https://www.weizmann.ac.il/mcb/UriAlon/

  2. Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8(6), 450 (2007)

    Article  Google Scholar 

  3. Batagelj, V., Mrvar, A.: Pajek datasets. https://www.kegg.jp/

  4. Bu, D., et al.: Topological structure analysis of the protein–protein interaction network in budding yeast. Nucleic Acids Res. 31(9), 2443–2450 (2003)

    Article  Google Scholar 

  5. Buhler, J., Tompa, M.: Finding motifs using random projections. J. Comput. Biol. 9(2), 225–242 (2002)

    Article  Google Scholar 

  6. Chen, J., Hsu, W., Lee, M.L., Ng, S.-K.: Labeling network motifs in protein interactomes for protein function prediction. In: IEEE 23rd International Conference on Data Engineering, ICDE 2007, pp. 546–555. IEEE (2007)

    Google Scholar 

  7. Chen, L., et al.: Identification of breast cancer patients based on human signaling network motifs. Sci. Rep. 3, 3368 (2013)

    Article  Google Scholar 

  8. Ferreira, R., Grossi, R., Rizzi, R.: Output-sensitive listing of bounded-size trees in undirected graphs. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 275–286. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23719-5_24

    Chapter  Google Scholar 

  9. Grochow, J.A., Kellis, M.: Network Motif discovery using subgraph enumeration and symmetry-breaking. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS, vol. 4453, pp. 92–106. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71681-5_7

    Chapter  Google Scholar 

  10. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  Google Scholar 

  11. Jin, G., Zhang, S., Zhang, X.-S., Chen, L.: Hubs with network motifs organize modularity dynamically in the protein-protein interaction network of yeast. PLoS ONE 2(11), e1207 (2007)

    Article  Google Scholar 

  12. Kashani, Z.R.M., et al.: Kavosh: a new algorithm for finding network motifs. BMC Bioinform. 10(1), 318 (2009)

    Article  Google Scholar 

  13. Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics 20(11), 1746–1758 (2004)

    Article  Google Scholar 

  14. KEGG: KEGG: Kyoto encyclopedia of genes and genomes. https://www.kegg.jp/

  15. Khakabimamaghani, S., Sharafuddin, I., Dichter, N., Koch, I., Masoudi-Nejad, A.: QuateXelero: an accelerated exact network motif detection algorithm. PLoS ONE 8(7), e68073 (2013)

    Article  Google Scholar 

  16. Kim, M.-S., Kim, J.-R., Kim, D., Lander, A.D., Cho, K.-H.: Spatiotemporal network motif reveals the biological traits of developmental gene regulatory networks in drosophila melanogaster. BMC Syst. Biol. 6(1), 31 (2012)

    Article  Google Scholar 

  17. Kim, W., Li, M., Wang, J., Pan, Y.: Biological network motif detection and evaluation. BMC Syst. Biol. 5(3), S5 (2011)

    Article  Google Scholar 

  18. Kovanen, L., Kaski, K., Kertész, J., Saramäki, J.: Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences. Proc. Natl. Acad. Sci. 110, 18070–18075 (2013)

    Article  Google Scholar 

  19. Li, G., Luo, J., Xiao, Z., Liang, C.: MTMO: an efficient network-centric algorithm for subtree counting and enumeration. Quant. Biol. 6(2), 142–154 (2018)

    Article  Google Scholar 

  20. Lin, W., Xiao, X., Xie, X., Li, X.-L.: Network motif discovery: A GPU approach. IEEE Trans. Knowl. Data Eng. 29(3), 513–528 (2017)

    Article  Google Scholar 

  21. Liu, B., Li, J., Chen, C., Tan, W., Chen, Q., Zhou, M.: Efficient motif discovery for large-scale time series in healthcare. IEEE Trans. Industr. Inf. 11(3), 583–590 (2015)

    Article  Google Scholar 

  22. Lonardi, J., Patel, P.: Finding motifs in time series. In: Proceedings of the 2nd Workshop on Temporal Data Mining, pp. 53–68 (2002)

    Google Scholar 

  23. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)

    Article  Google Scholar 

  24. Madar, D., Dekel, E., Bren, A., Alon, U.: Negative auto-regulation increases the input dynamic-range of the arabinose system of escherichia coli. BMC Syst. Biol. 5(1), 111 (2011)

    Article  Google Scholar 

  25. McKay, B.D., et al.: Practical graph isomorphism. Vanderbilt University, Nashville (1981)

    MATH  Google Scholar 

  26. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Net-work motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  27. Mueen, A., Keogh, E., Zhu, Q., Cash, S., Westover, B.: Exact discovery of time series motifs. In: Proceedings of the 2009 SIAM International Conference on Data Mining, pp. 473–484. SIAM (2009)

    Google Scholar 

  28. Newman: Newman Mark network data (2009). http://www-personal.umich.edu/

  29. Omidi, S., Schreiber, F., Masoudi-Nejad, A.: MODA: an efficient algorithm for net-work motif discovery in biological networks. Genes Genet. Syst. 84(5), 385–395 (2009)

    Article  Google Scholar 

  30. Ribeiro, P., Silva, F.: G-tries: an efficient data structure for discovering network motifs. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 1559–1566. ACM (2010)

    Google Scholar 

  31. Saha, T.K., Hasan, M.A.: Finding network motifs using MCMC sampling. In: Mangioni, G., Simini, F., Uzzo, S.M., Wang, D. (eds.) Complex Networks VI. SCI, vol. 597, pp. 13–24. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16112-9_2

    Chapter  Google Scholar 

  32. Schreiber, F., Schwobbermeyer, H.: MAVisto: a tool for the exploration of network motifs. Bioinformatics 21(17), 3572–3574 (2005)

    Article  Google Scholar 

  33. Shoval, O., Alon, U.: SnapShot: network motifs. Cell 143(2), 326 (2010)

    Article  Google Scholar 

  34. Slota, G.M., Madduri, K.: Fast approximate subgraph counting and enumeration. In: 2013 42nd International Conference on Parallel Processing (ICPP), pp. 210–219. IEEE (2013)

    Google Scholar 

  35. Turkett, W., Fulp, E., Lever, C., Allan, J.E.: Graph mining of motif profiles for computer network activity inference. In: Ninth Workshop on Mining and Learning with Graphs (2011)

    Google Scholar 

  36. Wernicke, S.: A faster algorithm for detecting network motifs. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS, vol. 3692, pp. 165–177. Springer, Heidelberg (2005). https://doi.org/10.1007/11557067_14

    Chapter  Google Scholar 

  37. Wernicke, S.: Efficient detection of network motifs. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 3(4), 347–359 (2006)

    Article  Google Scholar 

  38. Wernicke, S., Rasche, F.: FANMOD: a tool for fast network motif detection. Bioinformatics 22(9), 1152–1153 (2006)

    Article  Google Scholar 

  39. Wong, E., Baur, B., Quader, S., Huang, C.-H.: Biological network motif detection: principles and practice. Brief. Bioinform. 13(2), 202–215 (2011)

    Article  Google Scholar 

  40. Yeger-Lotem, E., et al.: Network motifs in integrated cellular networks of transcription–regulation and protein–protein interaction. Proc. Natl. Acad. Sci. 101(16), 5934–5939 (2004)

    Article  Google Scholar 

  41. Zeng, T., Semiari, O., Saad, W.: Spatio-temporal motifs for optimized vehicle-to-vehicle (v2v) communications. In: 2018 International Conference on Computing, Networking and Communications (ICNC), pp. 789–794, March 2018

    Google Scholar 

Download references

Acknowledgement

Authors would like to acknowledge TEQIP-III, NIT Silchar for supporting this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ripon Patgiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jain, D., Patgiri, R. (2019). Network Motifs: A Survey. In: Singh, M., Gupta, P., Tyagi, V., Flusser, J., Ören, T., Kashyap, R. (eds) Advances in Computing and Data Sciences. ICACDS 2019. Communications in Computer and Information Science, vol 1046. Springer, Singapore. https://doi.org/10.1007/978-981-13-9942-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9942-8_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9941-1

  • Online ISBN: 978-981-13-9942-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics