Skip to main content

Deep Convolution Neural Network Based Denoiser for Mammographic Images

  • Conference paper
  • First Online:
Advances in Computing and Data Sciences (ICACDS 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1045))

Included in the following conference series:

Abstract

Denoising is an important image pre-processing operation required to improve the image quality. In the past, several image denoising solutions have been put forth with varying performances. Recently, deep-learning based approaches have given better results than conventional algorithms. While these methods offer promising results on denoising of natural images, their application to medical imaging is yet to be fully explored. In this study, mammographic images, which are generally corrupted with Gaussian noise, have been effectively denoised using a deep convolution neural network. The model proposed in this work outshines various existing state-of-the-art solutions. Our model achieves a structural similarity index (SSIM) of 0.98 and value of 41.53 dB for peak signal to noise ratio (PSNR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldman, L.W.: Principles of CT: radiation dose and image quality. J. Nucl. Med. Technol. 35(4), 213–225 (2007)

    Article  Google Scholar 

  2. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising with block-matching and 3D filtering. In: Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning, vol. 6064, p. 606414 (2006)

    Google Scholar 

  3. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2862–2869 (2014)

    Google Scholar 

  4. Kervrann, C., Boulanger, J., Coupé, P.: Bayesian non-local means filter, image redundancy and adaptive dictionaries for noise removal. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 520–532. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72823-8_45

    Chapter  Google Scholar 

  5. Gondara, L.: Medical image denoising using convolutional denoising autoencoders. In: IEEE 16th International Conference on Data Mining Workshops (ICDMW), pp. 241–246. IEEE, December 2016

    Google Scholar 

  6. Simoncelli, E.P., Adelson, E.H.: Noise removal via Bayesian wavelet coring. In: Proceedings of IEEE International Conferences on Image Processing, pp. 379–382 (1996)

    Google Scholar 

  7. Starck, J.L., Candes, E.J., Donoho, D.L.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11(6), 670–684 (2002)

    Article  MathSciNet  Google Scholar 

  8. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)

    Article  MathSciNet  Google Scholar 

  9. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311 (2006)

    Article  Google Scholar 

  10. Zhang, W., Doi, K., Giger, M.L., Wu, Y., Nishikawa, R.M., Schmidt, R.A.: Computerized detection of clustered microcalcifications in digital mammograms using a shift-invariant artificial neural network. Med. Phys. 21(4), 517–524 (1994)

    Article  Google Scholar 

  11. Lo, S.C., Lou, S.L., Lin, J.S., Freedman, M.T., Chien, M.V., Mun, S.K.: Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans. Med. Imaging 14(4), 711–718 (1995)

    Article  Google Scholar 

  12. Kawahara, J., Hamarneh, G.: Multi-resolution-tract CNN with hybrid pretrained and skin-lesion trained layers. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, H.-I. (eds.) MLMI 2016. LNCS, vol. 10019, pp. 164–171. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47157-0_20

    Chapter  Google Scholar 

  13. Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J.: Multi-scale convolutional neural networks for lung nodule classification. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 588–599. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19992-4_46

    Chapter  Google Scholar 

  14. de Vos, B.D., Wolterink, J.M., de Jong, P.A., Viergever, M.A., IÅ¡gum, I.: 2D image classification for 3D anatomy localization: employing deep convolutional neural networks. In: Medical Imaging 2016: Image Processing, vol. 9784, p. 97841Y. International Society for Optics and Photonics, March 2016

    Google Scholar 

  15. Yang, D., Zhang, S., Yan, Z., Tan, C., Li, K., Metaxas, D.: Automated anatomical landmark detection ondistal femur surface using convolutional neural network. In: IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 17–21. IEEE, April 2015

    Google Scholar 

  16. Dou, Q., et al.: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans. Med. Imaging 35(5), 1182–1195 (2016)

    Article  Google Scholar 

  17. Brosch, T., Tang, L.Y., Yoo, Y., Li, D.K., Traboulsee, A., Tam, R.: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans. Med. Imaging 35(5), 1229–1239 (2016)

    Article  Google Scholar 

  18. Miao, S., Wang, Z.J., Liao, R.: A CNN regression approach for real-time 2D/3D registration. IEEE Trans. Med. Imaging 35(5), 1352–1363 (2016)

    Article  Google Scholar 

  19. Oktay, O., et al.: Multi-input cardiac image super-resolution using convolutional neural networks. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 246–254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_29

    Chapter  Google Scholar 

  20. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  21. Benou, A., Veksler, R., Friedman, A., Riklin Raviv, T.: De-noising of contrast-enhanced MRI sequences by an ensemble of expert deep neural networks. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 95–110. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_11

    Chapter  Google Scholar 

  22. Suckling, J., et al.: The mammographic image analysis society digital mammogram database exerpta medica. Int. Congr. Ser. 1069, 375–378 (1994)

    Google Scholar 

  23. Wang, C.W., et al.: A benchmark for comparison of dental radiography analysis algorithms. Med. Image Anal. 31, 63–76 (2016)

    Article  Google Scholar 

  24. Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neural networks compete with BM3D? In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2392–2399. IEEE, June 2012

    Google Scholar 

  25. Jain, V., Seung, S.: Natural image denoising with convolutional networks. In: Advances in Neural Information Processing Systems, pp. 769–776 (2009)

    Google Scholar 

  26. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  27. Gao, R., Grauman, K.: On-demand learning for deep image restoration. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1086–1095, October 2017

    Google Scholar 

  28. Chollet, F.: Keras Github repository. https://github.com/keras-team/keras

  29. Tensorflow. http://www.tensorflow.org

  30. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  31. Image and video denoising by sparse 3D transform-domain collaborative filtering. http://www.cs.tut.fi/~foi/GCF-BM3D/

  32. Weighted Nuclear Norm Minimization for Image Denoising, Version 1.0. https://github.com/csjunxu/WNNM_CVPR2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurprem Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, G., Mittal, A., Aggarwal, N. (2019). Deep Convolution Neural Network Based Denoiser for Mammographic Images. In: Singh, M., Gupta, P., Tyagi, V., Flusser, J., Ören, T., Kashyap, R. (eds) Advances in Computing and Data Sciences. ICACDS 2019. Communications in Computer and Information Science, vol 1045. Springer, Singapore. https://doi.org/10.1007/978-981-13-9939-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9939-8_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9938-1

  • Online ISBN: 978-981-13-9939-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics