Skip to main content

Cerebral Microbleeds Detection via Convolutional Neural Network with and Without Batch Normalization

  • Conference paper
  • First Online:
Frontiers in Intelligent Computing: Theory and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1014))

Abstract

Cerebral microbleeds (CMBs) as a kind of subclinical sign are associated with cerebrovascular and cognitive diseases, as well as normal aging. Hence, it is important to detect CMBs automatically and accurately for helping medical research and preventing related diseases. CMBs can be visualized as small and rounded radiological entities via susceptibility-weighted imaging (SWI). So far, some advances about detecting CMBs automatically have been achieved. In this study, a designed CNN structure is for further improving the performance of detecting CMBs automatically. Furthermore, a breakthrough technique named batch normalization (BN), which is widely used in training deep neural networks for accelerating the training process, was tested. The performance of CNN with BN was compared to that without BN. It is found that the latter model achieved better prediction results. Afterward, four state-of-the-art methods were compared to the designed CNN. The comparison shows the designed CNN achieved the best performance with a sensitivity of 99.69%, a specificity of 96.5%, and an accuracy of 98.09%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenberg, S.M., Vernooij, M.W., Cordonnier, C., Viswanathan, A., Salman, R.A.S., Warach, S., Launer, L.J., Van Buchem, M.A., Breteler, M.M.B., Microbleed Study G: Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol. 8(2), 165–174 (2009)

    Google Scholar 

  2. Charidimou, A., Shakeshaft, C., Werring, D.J.: Cerebral microbleeds on magnetic resonance imaging and anticoagulant-associated intracerebral hemorrhage risk. Front. Neurol. 3, 133 (2012)

    Article  Google Scholar 

  3. Nandigam, R., Viswanathan, A., Delgado, P., Skehan, M., Smith, E., Rosand, J., Greenberg, S., Dickerson, B.: MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. Am. J. Neuroradiol. 30(2), 338–343 (2009)

    Article  Google Scholar 

  4. Mittal, S., Wu, Z., Neelavalli, J., Haacke, E.M.: Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. Am. J. Neuroradiol. 30(2), 232–252 (2009)

    Article  Google Scholar 

  5. Wu, L.: Weights optimization of neural network via improved BCO approach. Progr. Electromagnet. Res. 83, 185–198 (2008). https://doi.org/10.2528/PIER08051403

    Article  Google Scholar 

  6. Wu, L.N.: Pattern recognition via PCNN and tsallis entropy. Sensors 8(11), 7518–7529 (2008). https://doi.org/10.3390/s8117518

    Article  Google Scholar 

  7. Zhang, Y.: Stock market prediction of S&P 500 via combination of improved BCO approach and BP neural network. Expert Syst. Appl. 36(5), 8849–8854 (2009)

    Article  MathSciNet  Google Scholar 

  8. Naggaz, N.: Remote-sensing image classification based on an improved probabilistic neural network. Sensors 9(9), 7516–7539 (2009)

    Article  Google Scholar 

  9. Wei, G.: Color image enhancement based on HVS and PCNN. Sci. China Inf. Sci. 53(10), 1963–1976 (2010). https://doi.org/10.1007/s11432-010-4075-9

    Article  MathSciNet  Google Scholar 

  10. Wu, L.: Classification of fruits using computer vision and a multiclass support vector machine. Sensors 12(9), 12489–12505 (2012). https://doi.org/10.3390/s120912489

    Article  Google Scholar 

  11. Ji, G.: Fruit classification using computer vision and feedforward neural network. J. Food Eng. 143, 167–177 (2014). https://doi.org/10.1016/j.jfoodeng.2014.07.001

    Article  Google Scholar 

  12. Seghier, M.L., Kolanko, M.A., Leff, A.P., Jager, H.R., Gregoire, S.M., Werring, D.J.: Microbleed detection using automated segmentation (MIDAS): a new method applicable to standard clinical MR images. Plos One 6(3), Article ID: e17547 (2011). https://doi.org/10.1371/journal.pone.0017547

  13. Kuijf, H.J., de Bresser, J., Geerlings, M.I., Conijn, M.M.A., Viergever, M.A., Biessels, G.J., Vincken, K.L.: Efficient detection of cerebral microbleeds on 7.0 T MR images using the radial symmetry transform. Neuroimage 59(3), 2266–2273 (2012). https://doi.org/10.1016/j.neuroimage.2011.09.061

    Article  Google Scholar 

  14. Bian, W., Hess, C.P., Chang, S.M., Nelson, S.J., Lupo, J.M.: Computer-aided detection of radiation-induced cerebral microbleeds on susceptibility-weighted MR images. Neuroimage-Clinical 2, 282–290 (2013). https://doi.org/10.1016/j.nicl.2013.01.012

    Article  Google Scholar 

  15. Roy, S., Jog, A., Magrath, E., Butman, J.A., Pham, D.L.: Cerebral microbleed segmentation from susceptibility weighted images. In: Proceedings of SPIE, 9413, Article ID: 94131E (2015). https://doi.org/10.1117/12.2082237

  16. Fazlollahi, A., Meriaudeau, F., Giancardo, L., Villemagne, V.L., Rowe, C.C., Yates, P., Salvado, O., Bourgeat, P.: Computer-aided detection of cerebral microbleeds in susceptibility-weighted imaging. Comput. Med. Imaging Graph. 46(Part 3), 269–276 (2015). https://doi.org/10.1016/j.compmedimag.2015.10.001

    Article  Google Scholar 

  17. van den Heuvel, T.L.A., van der Eerden, A.W., Manniesing, R., Ghafoorian, M., Tan, T., Andriessen, T.M.J.C., Vande Vyvere, T., van den Hauwe, L., ter Haar Romeny, B.M., Goraj, B.M., Platel, B.: Automated detection of cerebral microbleeds in patients with traumatic brain injury. NeuroImage: Clinical 12, 241–251 (2016). http://doi.org/10.1016/j.nicl.2016.07.002

  18. Hou, X.-X.: Voxelwise detection of cerebral microbleed in CADASIL patients by leaky rectified linear unit and early stopping. Multimedia Tools Appl. 77(17), 21825–21845 (2018). https://doi.org/10.1007/s11042-017-4383-9

    Article  Google Scholar 

  19. Hou, X.-X.: Seven-layer deep neural network based on sparse autoencoder for voxelwise detection of cerebral microbleed. Multimedia Tools Appl. 77(9), 10521–10538 (2018). https://doi.org/10.1007/s11042-017-4554-8

    Article  Google Scholar 

  20. Jiang, Y.Y.: Cerebral micro-bleed detection based on the convolution neural network with rank based average pooling. IEEE Access 5, 16576–16583 (2017). https://doi.org/10.1109/access.2017.2736558

    Article  Google Scholar 

  21. Lu, S.: Detection of cerebral microbleeding based on deep convolutional neural network. In: 14th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China. IEEE, pp. 93–96 (2017). https://doi.org/10.1109/iccwamtip.2017.8301456

  22. Sui, Y.X.: Classification of Alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. J. Med. Syst. 42(5), Article ID: 85 (2018). https://doi.org/10.1007/s10916-018-0932-7

  23. Pan, C.: Multiple sclerosis identification by convolutional neural network with dropout and parametric ReLU. J. Comput. Sci. 28, 1–10 (2018). https://doi.org/10.1016/j.jocs.2018.07.003

    Article  MathSciNet  Google Scholar 

  24. Pan, C.: Abnormal breast identification by nine-layer convolutional neural network with parametric rectified linear unit and rank-based stochastic pooling. J. Comput. Sci. 27, 57–68 (2018). https://doi.org/10.1016/j.jocs.2018.05.005

    Article  Google Scholar 

  25. Tang, C.: Twelve-layer deep convolutional neural network with stochastic pooling for tea category classification on GPU platform. Multimedia Tools Appl. 77(17), 22821–22839 (2018). https://doi.org/10.1007/s11042-018-5765-3

    Article  Google Scholar 

  26. Lv, Y.-D.: Alcoholism detection by data augmentation and convolutional neural network with stochastic pooling. J. Med. Syst. 42(1), Article ID: 2 (2018)

    Google Scholar 

  27. Muhammad, K.: Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation. Multimedia Tools Appl. 78(3), 3613–3632 (2017). https://doi.org/10.1007/s11042-017-5243-3

    Article  Google Scholar 

  28. Zhao, G.: Polarimetric synthetic aperture radar image segmentation by convolutional neural network using graphical processing units. J. Real-Time Image Process. (2017). https://doi.org/10.1007/s11554-017-0717-0

  29. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift (2015). arXiv preprint arXiv:150203167

  30. Jia, W.-J.: Ford motorcar identification from single-camera side-view image based on convolutional neural network. In: 18th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL), Guilin, China, pp. 173–180. Springer (2017)

    Google Scholar 

  31. Das, R., Piciucco, E., Maiorana, E., Campisi, P.: Convolutional neural network for finger-vein-based biometric identification. IEEE Trans. Inf. Forensics Secur. 14(2), 360–373 (2019). https://doi.org/10.1109/tifs.2018.2850320

    Article  Google Scholar 

  32. Barik, A., Rai, R.K., Chowdhury, A.: Alcohol use-related problems among a rural indian population of West Bengal: an application of the alcohol use disorders identification test (AUDIT). Alcohol Alcoh. 82(2), 215–223 (2016). Oxford Academic

    Google Scholar 

  33. Li, Y.-J.: Single slice based detection for Alzheimer’s disease via wavelet entropy and multilayer perceptron trained by biogeography-based optimization. Multimedia Tools Appl. 77(9), 10393–10417 (2018). https://doi.org/10.1007/s11042-016-4222-4

    Article  Google Scholar 

  34. Sun, Y.: A multilayer perceptron based smart pathological brain detection system by fractional fourier entropy. J. Med. Syst. 40(7), Article ID: 173 (2016). https://doi.org/10.1007/s10916-016-0525-2

  35. Wei, L.: Fruit classification by wavelet-entropy and feedforward neural network trained by fitness-scaled chaotic ABC and biogeography-based optimization. Entropy 17(8), 5711–5728 (2015). https://doi.org/10.3390/e17085711

    Article  Google Scholar 

  36. Wu, J.: Fruit classification by biogeography-based optimization and feedforward neural network. Expert Syst. 33(3), 239–253 (2016). https://doi.org/10.1111/exsy.12146

    Article  Google Scholar 

  37. Dodge, S.F., Karam, L.J.: Quality robust mixtures of deep neural networks. IEEE Trans. Image Process. 27(11), 5553–5562 (2018). https://doi.org/10.1109/tip.2018.2855966

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We have obtained the permission to use the data/image/sources from the competent authorities. We take responsibility for the same. Authors are thankful to Guangdong Provincial Key Laboratory of Mineral Resources and Geological Processes, Guangzhou, China for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hong, J., Liu, J. (2020). Cerebral Microbleeds Detection via Convolutional Neural Network with and Without Batch Normalization. In: Satapathy, S., Bhateja, V., Nguyen, B., Nguyen, N., Le, DN. (eds) Frontiers in Intelligent Computing: Theory and Applications. Advances in Intelligent Systems and Computing, vol 1014. Springer, Singapore. https://doi.org/10.1007/978-981-13-9920-6_16

Download citation

Publish with us

Policies and ethics