Skip to main content

Bacteriophage: A New Hope for the Control of Antibiotic-Resistant Bacteria

  • Chapter
  • First Online:
Antibiotic Resistant Bacteria: A Challenge to Modern Medicine

Abstract

Discovery of penicillin has replaced all the traditional chemotherapeutics and increased dependency on it for limiting infections. Dependency of medical world on the antibiotics has been traded off by drug-resistant bacteria. Emergence of drug-resistant bacteria is a consequence of abused medical practices, which led us toward the edge of pre-antibiotic era. Modern medicine is severely threatened by the multiple drug-resistant (MDR) bacteria, due to limitations of potent new antibiotics. Although modern medicine has adopted many new alternatives, but they have not earned success like lifesaving antibiotics due to poor pharmacokinetics. Bacteriophage therapy has drawn the attention of researchers, due to their host specificity and self-replicating, effeciently economical, and eco-friendly properties. Infact, phage therapy was in use since the twentieth century, the discovery of antibiotic and lack of information about phage therapy pharmacokinetics caused a decline in the use of phage therapy. Herein, we have focused a torch of light on phage therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM (2011) Phage treatment of human infections. Bacteriophage 1(2):66–85

    PubMed  PubMed Central  Google Scholar 

  • Bernstein LJ, Ochs HD, Wedgwood RJ, Rubinstein A (1985) Defective humoral immunity in pediatric acquired immune deficiency syndrome. J Pediatr 107(3):352–357

    CAS  PubMed  Google Scholar 

  • Biswas B, Adhya S, Washart P, Paul B, Trostel AN, Powell B, Carlton R, Merril CR (2002) Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun 70(1):204–210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bordet J (1925) Le problème de l’autolyse microbienne transmissible ou du bacteriophage. Ann Inst Pasteur 39:711–763

    Google Scholar 

  • Borysowski J, Międzybrodzki R, Wierzbicki P, Kłosowska D, Korczak-Kowalska G, Weber-Dąbrowska B, Górski A (2017) A3R phage and Staphylococcus aureus lysate do not induce neutrophil degranulation. Viruses 9(2):36

    PubMed Central  Google Scholar 

  • Bruttin A, Brüssow H (2005) Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother 49(7):2874–2878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns BJ, Timms AR, Jansen VA, Connerton IF, Payne RJ (2009) Quantitative models of in vitro bacteriophage–host dynamics and their application to phage therapy. PLoS Pathog 5(1):e1000253

    PubMed  PubMed Central  Google Scholar 

  • Centers for Disease Control (2017) Antibiotic resistance: the global threat. 2015; Accessed Mar 29, 2017. Available from: https://www.cdc.gov/drugresistance/pdf/antibiotic_resistant_fs.pdf

  • Centers for Disease Control and Prevention (2013) Vital signs: carbapenem-resistant Enterobacteriaceae. MMWR Morb Mortal Wkly Rep 62:165–170

    Google Scholar 

  • d’Herelle F (1917) Sur un microbe invisible antagoniste des bacilles dysentériques. CR Acad Sci Paris 165:373–375

    Google Scholar 

  • d’Herelle F (1931) Bacteriophage as a treatment in acute medical and surgical infections. Bull N Y Acad Med 7(5):329–348

    PubMed  PubMed Central  Google Scholar 

  • Espy MJ, Uhl JR, Sloan LM, Buckwalter SP, Jones MF, Vetter EA, Yao JDC, Wengenack NL, Rosenblatt JE, Cockerill F3, Smith TF (2006) Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev 19(1):165–256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fong SA, Drilling A, Morales S, Cornet ME, Woodworth BA, Fokkens WJ, Psaltis AJ, Vreugde S, Wormald PJ (2017) Activity of bacteriophages in removing biofilms of Pseudomonas aeruginosa isolates from chronic rhinosinusitis patients. Front Cell Infect Microbiol 7:418

    PubMed  PubMed Central  Google Scholar 

  • Frieden T (2013) Antibiotics resistance threats in the United States. CDC Publishing Web. http://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf. Accessed 23 April 2013

  • Hankin EH (1896) L’action bactericide des eaux de la Jumna et du Gange sur le vibrion du cholera. Ann Inst Pasteur 10(5):ll

    Google Scholar 

  • Harper DR, Enright MC (2011) Bacteriophages for the treatment of Pseudomonas aeruginosa infections. J Appl Microbiol 111(1):1–7

    CAS  PubMed  Google Scholar 

  • Hawkins C, Harper D, Burch D, Änggård E, Soothill J (2010) Topical treatment of Pseudomonas aeruginosa otitis of dogs with a bacteriophage mixture: a before/after clinical trial. Vet Microbiol 146(3–4):309–313

    PubMed  Google Scholar 

  • Hughes JM (2011) Preserving the lifesaving power of antimicrobial agents. JAMA 305(10):1027–1028

    CAS  PubMed  Google Scholar 

  • Husler T (2006) Viruses vs. superbugs: a solution to the antibiotics crisis? Palgrave Macmillan, London

    Google Scholar 

  • Jennes S, Merabishvili M, Soentjens P, Pang KW, Rose T, Keersebilck E, Soete O, François PM, Teodorescu S, Verween G, Verbeken G (2017) Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury—a case report. Crit Care 21(1):129

    PubMed  PubMed Central  Google Scholar 

  • Keen EC (2012) Phage therapy: concept to cure. Front Microbiol 3:238

    PubMed  PubMed Central  Google Scholar 

  • Kropinski AM (2006) Phage therapy – everything old is new again. Can J Infect Dis Med Microbiol 17(5):297–306

    PubMed  PubMed Central  Google Scholar 

  • Kurzępa A, Dąbrowska K, Skaradziński G, Górski A (2009) Bacteriophage interactions with phagocytes and their potential significance in experimental therapy. Clin Exp Med 9(2):93

    PubMed  Google Scholar 

  • Kutateladze M, Adamia R (2010) Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 28(12):591–595

    CAS  PubMed  Google Scholar 

  • Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11(1):69–86

    CAS  PubMed  Google Scholar 

  • Kutter E, Bryan D, Ray G, Brewster E, Blasdel B, Guttman B (2018) From host to phage metabolism: hot tales of phage T4’s takeover of E. coli. Viruses 10(7):387

    PubMed Central  Google Scholar 

  • Larckum N (1932) Bacteriophage in clinical medicine. J Lab Clin Med 17:675

    Google Scholar 

  • Leitner L, Sybesma W, Chanishvili N, Goderdzishvili M, Chkhotua A, Ujmajuridze A, Schneider MP, Sartori A, Mehnert U, Bachmann LM, Kessler TM (2017) Bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomized, placebo-controlled, double-blind clinical trial. BMC Urol 17(1):90

    PubMed  PubMed Central  Google Scholar 

  • Lin DM, Koskella B, Lin HC (2017) Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther 8(3):162

    PubMed  PubMed Central  Google Scholar 

  • Lu TK, Koeris MS (2011) The next generation of bacteriophage therapy. Curr Opin Microbiol 14(5):524–531

    PubMed  Google Scholar 

  • Łusiak-Szelachowska M, Żaczek M, Weber-Dąbrowska B, Międzybrodzki R, Letkiewicz S, Fortuna W, Rogóż P, Szufnarowski K, Jończyk-Matysiak E, Olchawa E, Walaszek KM (2017) Antiphage activity of sera during phage therapy in relation to its outcome. Future Microbiol 12(2):109–117

    PubMed  Google Scholar 

  • Markoishvili K, Tsitlanadze G, Katsarava R, Glenn J, Morris MD Jr, Sulakvelidze A (2002) A novel sustained-release matrix based on biodegradable poly (ester amide) s and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. Int J Dermatol 41(7):453–458

    CAS  PubMed  Google Scholar 

  • Mastroianni B. (2018). https://www.everydayhealth.com/crohns-disease/treatment/fda-clears-clinical-studies-new-bacteriophage-treatment-crohns-disease/. Accessed on 31st Dec 2018

  • Matsuzaki S, Rashel M, Uchiyama J, Sakurai S, Ujihara T, Kuroda M, Ikeuchi M, Tani T, Fujieda M, Wakiguchi H, Imai S (2005) Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother 11(5):211–219

    PubMed  Google Scholar 

  • Merril CR, Scholl D, Adhya SL (2003) The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov 2(6):489

    CAS  PubMed  Google Scholar 

  • Międzybrodzki R, Borysowski J, Weber-Dąbrowska B, Fortuna W, Letkiewicz S, Szufnarowski K, Pawełczyk Z, Rogóż P, Kłak M, Wojtasik E (2012) Chapter 3–Clinical aspects of phage therapy. In: Łobocka M, Szybalski W (eds) Advances in virus research, vol 83. Academic, Cambridge, MA, pp 73–121

    Google Scholar 

  • Międzybrodzki R, Borysowski J, Kłak M, Jończyk-Matysiak E, Obmińska-Mrukowicz B, Suszko-Pawłowska A, Bubak B, Weber-Dąbrowska B, Górski A (2017) In vivo studies on the influence of bacteriophage preparations on the autoimmune inflammatory process. Biomed Res Int 2017:3612015

    PubMed  PubMed Central  Google Scholar 

  • Mohaidat QI, Sheikh K, Palchaudhuri S, Rehse SJ (2012) Pathogen identification with laser-induced breakdown spectroscopy: the effect of bacterial and biofluid specimen contamination. Appl Opt 51(7):B99–B107

    PubMed  Google Scholar 

  • Myelnikov D (2018) An alternative cure: the adoption and survival of bacteriophage therapy in the USSR, 1922-1955. J Hist Med Allied Sci 73(4):385–411. https://doi.org/10.1093/jhmas/jry024

    Article  PubMed  PubMed Central  Google Scholar 

  • Nathan C, Goldberg FM (2005) The profit problem in antibiotic R&D. Nat Rev Drug Discov 4(11):887

    CAS  PubMed  Google Scholar 

  • Orlova EV (March 14th 2012). Bacteriophages and their structural organisation, Bacteriophages, Ipek Kurtboke, IntechOpen, https://doi.org/10.5772/34642

    Google Scholar 

  • Nilsson AS (2014) Phage therapy—constraints and possibilities. Ups J Med Sci 119(2):192–198

    PubMed  PubMed Central  Google Scholar 

  • PhagoBurn (2018) Evaluation of Phage Therapy for the Treatment of Escherichia coli and Pseudomonas aeruginosa Burn Wound Infections. Accessed 18 Apr 2018. Available online: http://www.phagoburn.eu/

  • Rhoads DD, Wolcott RD, Kuskowski MA, Wolcott BM, Ward LS, Sulakvelidze A (2009) Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J Wound Care 18(6):237–243

    CAS  PubMed  Google Scholar 

  • Rhoads DD, Wolcott RD, Sun Y, Dowd SE (2012) Comparison of culture and molecular identification of bacteria in chronic wounds. Int J Mol Sci 13(3):2535–2550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruska H (1940) Die Sichtbarmachung der bakteriophagen lyse im übermikroskop. Naturwissenschaften 28(3):45–46

    CAS  Google Scholar 

  • Sankaran N (2010) The bacteriophage, its role in immunology: how Macfarlane Burnet’s phage research shaped his scientific style. Stud Hist Philos Sci C: Stud Hist Philos Biol Biomed Sci 41(4):367–375

    Google Scholar 

  • Saussereau E, Vachier I, Chiron R, Godbert B, Sermet I, Dufour N, Pirnay JP, De Vos D, Carrié F, Molinari N, Debarbieux L (2014) Effectiveness of bacteriophages in the sputum of cystic fibrosis patients. Clin Microbiol Infect 20(12):O983–O990

    CAS  PubMed  Google Scholar 

  • Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, Barr JJ, Reed SL, Rohwer F, Benler S, Segall AM (2017) Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother 61(10):e00954–e00917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Servick, Kelly. “Beleaguered phage therapy trial presses on.” (2016): 1506-1506. 

    Google Scholar 

  • Slopek S, Weber-Dabrowska B, Dabrowski M, Kucharewicz-Krukowska A (1987) Results of bacteriophage treatment of suppurative bacterial infections in the years 1981–1986. Arch Immunol Ther Exp 35(5):569–583

    CAS  Google Scholar 

  • Smith HW, Huggins MB (1982) Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. Microbiology 128(2):307–318

    CAS  Google Scholar 

  • Smith HW, Huggins MB (1983) Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. Microbiology 129(8):2659–2675

    CAS  Google Scholar 

  • Smith HW, Huggins MB, Shaw KM (1987) The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. Microbiology 133(5):1111–1126

    CAS  Google Scholar 

  • Stone R (2002) Bacteriophage therapy. Stalin’s forgotten cure. Science 298:728–731

    CAS  PubMed  Google Scholar 

  • Sulakvelidze A, Alavidze Z, Morris JG (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45(3):649–659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sybesma W, Rohde C, Bardy P, Pirnay JP, Cooper I, Caplin J, Chanishvili N, Coffey A, De Vos D, Scholz AH, McCallin S (2018) Silk route to the acceptance and re-implementation of bacteriophage therapy—part II. Antibiotics 7(2):35

    PubMed Central  Google Scholar 

  • Twort FW (1915) An investigation on the nature of ultra-microscopic viruses. Lancet 186(4814):1241–1243

    Google Scholar 

  • United Nations (2017) PRESS RELEASE: high-level meeting on antimicrobial resistance. 2016; Accessed Mar 29, 2017. Available from: http://www.un.org/pga/71/2016/09/21/press-release-hlmeeting-on-antimicrobial-resistance/

  • World Health Organization (2017) Antibiotic resistance – a threat to global health security. 2013. Accessed Mar 29. Available from: http://www.who.int/drugresistance/activities/wha66_side_event/en/

  • Wright A, Hawkins CH, Änggård EE, Harper DR (2009) A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol 34(4):349–357

    CAS  PubMed  Google Scholar 

  • Yoshikawa TT (2002) Antimicrobial resistance and aging: beginning of the end of the antibiotic era? J Am Geriatr Soc 50:226–229

    Google Scholar 

  • Zhvania P, Hoyle NS, Nadareishvili L, Nizharadze D, Kutateladze M (2017) Phage therapy in a 16-year-old boy with Netherton syndrome. Front Med (4):94

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sagar, S., Kaistha, S., Das, A.J., Kumar, R. (2019). Bacteriophage: A New Hope for the Control of Antibiotic-Resistant Bacteria. In: Antibiotic Resistant Bacteria: A Challenge to Modern Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-9879-7_11

Download citation

Publish with us

Policies and ethics