Skip to main content

Nanotechnology: A Twenty-First-Century Approach Towards the Control of Antibiotic-Resistant Bacteria

  • Chapter
  • First Online:
Book cover Antibiotic Resistant Bacteria: A Challenge to Modern Medicine
  • 1098 Accesses

Abstract

Control of drug-resistant bacteria with commercially available antibiotics is a challenging task for the medical practitioners. Since the last three decades, there is no new medicine that has been introduced in the market for commercial purposes. Hence, medical practitioners are highly thirsty for new and novel antibiotics, and they are impatiently waiting for that. In the meantime, they have adopted new alternatives for the control of drug-resistant pathogens. Nanotechnology is an emerging field of science and technology, and it has changed the attitude of medical researchers towards chemotherapeutics. Nanomaterials having remarkable properties; these properties make them highly reactive, since they are utilized for the control of infectious diseases. Herein, in this chapter we have illustrated different properties of nanomaterials and their application in the field of medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alagarasi A (2011) Introduction to nanomaterials. National Center for Environmental Research. Conference on Production Engineering, August 26–29, 1974, Tokyo, pp 18–23

    Google Scholar 

  • Ali Z, Sharma PK, Warsi MH (2016) Fabrication and evaluation of ketorolac loaded cubosome for ocular drug delivery. J Appl Pharm Sci 6(9):204–208

    Google Scholar 

  • Allaker RP (2010) The use of nanoparticles to control oral biofilm formation. J Dent Res 89(11):1175–1186

    CAS  PubMed  Google Scholar 

  • Andrade F, Rafael D, Videira M, Ferreira D, Sosnik A, Sarmento B (2013) Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Adv Drug Deliv Rev 65(13–14):1816–1827

    CAS  PubMed  Google Scholar 

  • Ansari MA, Khan HM, Khan AA, Pal R, Cameotra SS (2013) Antibacterial potential of Al 2 O 3 nanoparticles against multidrug resistance strains of Staphylococcus aureus isolated from skin exudates. J Nanopart Res 15(10):1970

    Google Scholar 

  • Brown AN, Smith K, Samuels TA, Lu J, Obare SO, Scott ME (2012) Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. 78(8):2768–2774

    Google Scholar 

  • Cavalcanti A, Shirinzadeh B, Freitas RA Jr, Hogg T (2007) Nanorobot architecture for medical target identification. Nanotechnology 19(1):015103

    Google Scholar 

  • Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF (2002) Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int J Pharm 238(1–2):241–245

    CAS  PubMed  Google Scholar 

  • Cha SH, Hong J, McGuffie M, Yeom B, VanEpps JS, Kotov NA (2015) Shape-dependent biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity. ACS Nano 9(9):9097–9105

    CAS  PubMed  Google Scholar 

  • Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25(13):135101

    PubMed  Google Scholar 

  • Chaurasia AK, Thorat ND, Tandon A, Kim JH, Park SH, Kim KK (2016) Coupling of radiofrequency with magnetic nanoparticles treatment as an alternative physical antibacterial strategy against multiple drug resistant bacteria. Sci Rep 6:33662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YC, Huang XC, Luo YL, Chang YC, Hsieh YZ, Hsu HY (2013) Non-metallic nanomaterials in cancer theranostics: a review of silica- and carbon-based drug delivery systems. Sci Technol Adv Mater 14:44407. https://doi.org/10.1088/1468-6996/14/4/044407

    Article  CAS  Google Scholar 

  • Cheng Y, Qu H, Ma M, Xu Z, Xu P, Fang Y, Xu T (2007) Polyamidoamine (PAMAM) dendrimers as biocompatible carriers of quinolone antimicrobials: an in vitro study. Eur J Med Chem 42(7):1032–1038

    CAS  PubMed  Google Scholar 

  • Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831

    PubMed  PubMed Central  Google Scholar 

  • De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 3(2):133–149

    PubMed  PubMed Central  Google Scholar 

  • Devasahayam G, Scheld WM, Hoffman PS (2010) Newer antibacterial drugs for a new century. Expert Opin Investig Drugs 19(2):215–234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dhanabalan K, Gurunathan K (2015) Microemulsion mediated synthesis and characterization of CdS nanoparticles and its anti-biofilm efficacy against Escherichia coli ATCC 25922. J Nanosci Nanotechnol 15(6):4200–4204

    CAS  PubMed  Google Scholar 

  • Djafari J, Marinho C, Santos T, Igrejas G, Torres C, Capelo JL, Poeta P, Lodeiro C, Fernández-Lodeiro J (2016) New synthesis of gold-and silver-based nano-tetracycline composites. ChemistryOpen 5(3):206–212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2016) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine 12(3):789–799

    PubMed  Google Scholar 

  • Esmaeillou M, Zarrini G, Rezaee MA (2017) Vancomycin capped with silver nanoparticles as an antibacterial agent against multi-drug resistance Bacteria. Adv Pharm Bull 7(3):479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fayaz AM, Girilal M, Mahdy SA, Somsundar SS, Venkatesan R, Kalaichelvan PT (2011) Vancomycin bound biogenic gold nanoparticles: a different perspective for development of anti VRSA agents. Process Biochem 46(3):636–641

    Google Scholar 

  • Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20(5):8856–8874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Mumtaz S, Li CH, Hussain I, Rotello VM (2019) Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev 48(2):415–427

    PubMed  Google Scholar 

  • Hemeg HA (2017) Nanomaterials for alternative antibacterial therapy. Int J Nanomedicine 12:8211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Delgadillo R, Velasco-Arias D, Diaz D, Arevalo-Niño K, Garza-Enriquez M, De la Garza-Ramos MA, Cabral-Romero C (2012) Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm. Int J Nanomedicine 7:2109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Yu F, Park YS, Wang J, Shin MC, Chung HS, Yang VC (2010) Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. Biomaterials 31(34):9086–9091

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang N, Chen X, Zhu X, Xu M, Liu J (2017) Ruthenium complexes/polypeptide self-assembled nanoparticles for identification of bacterial infection and targeted antibacterial research. Biomaterials 141:296–313

    CAS  PubMed  Google Scholar 

  • Huo S, Jiang Y, Gupta A, Jiang Z, Landis RF, Hou S, Liang XJ, Rotello VM (2016) Fully zwitterionic nanoparticle antimicrobial agents through tuning of core size and ligand structure. ACS Nano 10(9):8732–8737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inbaraj BS, Chen BH (2016) Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. J Food Drug Anal 24(1):15–28

    Google Scholar 

  • Jain KK (2005) Nanotechnology in clinical laboratory diagnostics. Clin Chim Acta 358(1–2):37–54

    CAS  PubMed  Google Scholar 

  • JankauskaitĿ V, VitkauskienĿ A, Lazauskas A, Baltrusaitis J, ProsyĿevas I, AndruleviĿius M (2016) Bactericidal effect of graphene oxide/Cu/Ag nanoderivatives against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Int J Pharm 511(1):90–97

    PubMed  Google Scholar 

  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9(1):1050–1074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A 41(12):2699–2711

    CAS  Google Scholar 

  • Kaittanis C, Santra S, Perez JM (2010) Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Deliv Rev 62(4–5):408–423

    CAS  PubMed  Google Scholar 

  • Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem 5:1–23

    Google Scholar 

  • Khashan KS, Sulaiman GM, Ameer A, Kareem FA, Napolitano G (2016) Synthesis, characterization and antibacterial activity of colloidal NiO nanoparticles. Pak J Pharm Sci 29(2):541–546

    CAS  PubMed  Google Scholar 

  • Kruk T, Szczepanowicz K, Stefańska J, Socha RP, Warszyński P (2015) Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids Surf B: Biointerfaces 128:17–22

    CAS  PubMed  Google Scholar 

  • Kumar N, Kumbhat S (2016. Carbon-Based Nanomaterials) Essentials in nanoscience and nanotechnology. Wiley, Hoboken, pp 189–236

    Google Scholar 

  • Kumar V, Sharma N, Maitra SS (2017) In vitro and in vivo toxicity assessment of nanoparticles. Int Nano Lett 7(4):243–256

    CAS  Google Scholar 

  • Kumar M, Curtis A, Hoskins C (2018) Application of nanoparticle technologies in the combat against anti-microbial resistance. Pharmaceutics 10(1):11

    PubMed Central  Google Scholar 

  • Kuo WS, Chang CN, Chang YT, Yeh CS (2009) Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia. Chem Commun 32:4853–4855

    Google Scholar 

  • Lee JH, Kim YG, Cho MH, Lee J (2014) ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol Res 169(12):888–896

    CAS  PubMed  Google Scholar 

  • Lellouche J, Friedman A, Gedanken A, Banin E (2012) Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles. Int J Nanomedicine 7:5611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, O’Kennedy R (2003) Advances in biosensors for detection of pathogens in food and water. Enzym Microb Technol 32(1):3–13

    CAS  Google Scholar 

  • Li Y, Zhang W, Niu J, Chen Y (2012) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6(6):5164–5173

    CAS  PubMed  Google Scholar 

  • Mahtab R, Murphy CJ (2005) Probing DNA structure with nanoparticles. In: Nanobiotechnology protocols. Humana Press, Totowa, pp 179–190

    Google Scholar 

  • Mainous AG III, Diaz VA, Matheson EM, Gregorie SH, Hueston WJ (2011) Trends in hospitalizations with antibiotic-resistant infections: US, 1997–2006. Public Health Rep 126(3):354–360

    PubMed  PubMed Central  Google Scholar 

  • Murphy CJ (2001) Photophysical probes of DNA sequence-directed structure and dynamics. Adv Photochem 26:145–218

    CAS  Google Scholar 

  • Murphy CJ, Coffer JL (2002) Quantum dots: a primer. Appl Spectrosc 56(1):16A–27A

    CAS  Google Scholar 

  • Nagvenkar AP, Deokar A, Perelshtein I, Gedanken A (2016) A one-step sonochemical synthesis of stable ZnO–PVA nanocolloid as a potential biocidal agent. J Mater Chem B 4(12):21

    Google Scholar 

  • Nune SK, Gunda P, Thallapally PK, Lin YY, Forrest ML, Berkland CJ (2009) Nanoparticles for biomedical imaging. Expert Opin Drug Deliv 6(11):1175–1194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Omri A, Suntres ZE, Shek PN (2002) Enhanced activity of liposomal polymyxin B against Pseudomonas aeruginosa in a rat model of lung infection. Biochem Pharmacol 64(9):1407–1413

    CAS  PubMed  Google Scholar 

  • Otari SV, Patil RM, Waghmare SR, Ghosh SJ, Pawar SH (2013) A novel microbial synthesis of catalytically active Ag–alginate biohydrogel and its antimicrobial activity. Dalton Trans 42(27):9966–9975

    CAS  PubMed  Google Scholar 

  • Padmavathy N, Vijayaraghavan R (2011) Interaction of ZnO nanoparticles with microbes—a physio and biochemical assay. J Biomed Nanotechnol 7(6):813–822

    CAS  PubMed  Google Scholar 

  • Pantarotto D, Partidos CD, Hoebeke J, Brown F, Kramer ED, Briand JP, Muller S, Prato M, Bianco A (2003) Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol 10(10):961–966

    CAS  PubMed  Google Scholar 

  • Payne JN, Waghwani HK, Connor MG, Hamilton W, Tockstein S, Moolani H et al (2016) Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity. Front Microbiol 7:607. https://doi.org/10.3389/fmicb.2016.00607

    Article  PubMed  PubMed Central  Google Scholar 

  • Pei Y, Mohamed MF, Seleem MN, Yeo Y (2017) Particle engineering for intracellular delivery of vancomycin to methicillin-resistant Staphylococcus aureus (MRSA)-infected macrophages. J Control Release 267:133–143

    CAS  PubMed  Google Scholar 

  • Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65(13–14):1803–1815

    CAS  PubMed  Google Scholar 

  • Pokropivny VV, Skorokhod VV (2007) Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater Sci Eng C 27(5–8):990–993

    CAS  Google Scholar 

  • Pokropivny V, Lohmus R, Hussainova I, Pokropivny A, Vlassov S (2007) Introduction to nanomaterials and nanotechnology. Tartu University Press, Ukraine, pp 45–100

    Google Scholar 

  • Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112(5):841–852

    CAS  PubMed  Google Scholar 

  • Ramalingam B, Parandhaman T, Das SK (2016) Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl Mater Interfaces 8(7):4963–4976

    CAS  PubMed  Google Scholar 

  • Reddy LS, Nisha MM, Joice M, Shilpa PN (2014) Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharm Biol 52(11):1388–1397

    CAS  PubMed  Google Scholar 

  • Rizwan M, Singh M, Mitra CK, Morve RK (2014) Ecofriendly application of nanomaterials: nanobioremediation. J Nanopart 2014:7

    Google Scholar 

  • Roy AS, Parveen A, Koppalkar AR, Prasad MA (2010) Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus. J Biomat Nanobiotechnol 1(01):37

    CAS  Google Scholar 

  • Saeb A, Alshammari AS, Al-Brahim H, Al-Rubeaan KA (2014) Production of silver nanoparticles with strong and stable antimicrobial activity against highly pathogenic and multidrug resistant bacteria. Sci World J 2014:704708

    Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2(1):3

    Google Scholar 

  • Sarwar S, Chakraborti S, Bera S, Sheikh IA, Hoque KM, Chakrabarti P (2016) The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae: variation in response depends on biotype. Nanomedicine 12(6):1499–1509

    CAS  PubMed  Google Scholar 

  • Schiffelers R, Storm G, Bakker-Woudenberg I (2001) Liposome-encapsulated aminoglycosides in pre-clinical and clinical studies. J Antimicrob Chemother 48(3):333–344

    CAS  PubMed  Google Scholar 

  • Shaikh S, Rizvi SMD, Shakil S, Hussain T, Alshammari TM, Ahmad W, Tabrez S, Al-Qahtani MH, Abuzenadah AM (2017) Synthesis and characterization of cefotaxime conjugated gold nanoparticles and their use to target drug-resistant CTX-M-producing bacterial pathogens. J Cell Biochem 118(9):2802–2808

    CAS  PubMed  Google Scholar 

  • Shaker MA, Shaaban MI (2017) Formulation of carbapenems loaded gold nanoparticles to combat multi-antibiotic bacterial resistance: in vitro antibacterial study. Int J Pharm 525(1):71–84

    CAS  PubMed  Google Scholar 

  • Shamaila S, Zafar N, Riaz S, Sharif R, Nazir J, Naseem S (2016) Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nano 6(4):71

    Google Scholar 

  • Sharma VK, Filip J, Zboril R, Varma RS (2015) Natural inorganic nanoparticles–formation, fate, and toxicity in the environment. Chem Soc Rev 44(23):8410–8423

    CAS  PubMed  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7(3):219–242

    CAS  Google Scholar 

  • Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett JG, Edwards J Jr, Infectious Diseases Society of America (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46(2):155–164

    PubMed  Google Scholar 

  • Taniguchi N, Arakawa C, Kobayashi T (1974) On the basic concept of ‘nano-technology’. In: Proceedings of the international conference on Production Engineering, 1974–8. vol 2, pp 18–23

    Google Scholar 

  • Turos E, Shim JY, Wang Y, Greenhalgh K, Reddy GSK, Dickey S, Lim DV (2007) Antibiotic-conjugated polyacrylate nanoparticles: new opportunities for development of anti-MRSA agents. Bioorg Med Chem Lett 17(1):53–56

    CAS  PubMed  Google Scholar 

  • Tyagi R, Lala S, Verma AK, Nandy AK, Mahato SB, Maitra A, Basu MK (2005) Targeted delivery of arjunglucoside I using surface hydrophilic and hydrophobic nanocarriers to combat experimental leishmaniasis. J Drug Target 13(3):161–171

    CAS  PubMed  Google Scholar 

  • Vajtai R (Ed.) (2013) Springer handbook of nanomaterials. Springer Science & Business Media

    Google Scholar 

  • Wang Z, Dong K, Liu Z, Zhang Y, Chen Z, Sun H, Ren J, Qu X (2017) Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials 113:145–157

    CAS  PubMed  Google Scholar 

  • Wong MS, Chen CW, Hsieh CC, Hung SC, Sun DS, Chang HH (2015) Antibacterial property of Ag nanoparticle-impregnated N-doped titania films under visible light. Sci Rep 5:11978

    PubMed  PubMed Central  Google Scholar 

  • World Health Organization Global Priority List of Antibiotic-Resistant Bacteria to Guide Research (2017) Discovery, and development of new antibiotics. Accessed 8 Dec 2017. Available online:http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/

  • Yang S, Han X, Yang Y, Qiao H, Yu Z, Liu Y, Wang J, Tang T (2018) Bacteria-targeting nanoparticles with microenvironment-responsive antibiotic release to eliminate intracellular Staphylococcus aureus and associated infection. ACS Appl Mater Interfaces 10(17):14299–14311

    CAS  PubMed  Google Scholar 

  • Yoon KY, Byeon JH, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373(2–3):572–575

    CAS  PubMed  Google Scholar 

  • Zhang Y, Zhu P, Li G, Wang W, Chen L, Lu DD, Sun R, Zhou F, Wong C (2015) Highly stable and re-dispersible nano Cu hydrosols with sensitively size-dependent catalytic and antibacterial activities. Nanoscale 7(32):13775–13783

    CAS  PubMed  Google Scholar 

  • Zinn CS, Westh H, Rosdahl V, T. and Sarisa Study Group (2004) An international multicenter study of antimicrobial resistance and typing of hospital Staphylococcus aureus isolates from 21 laboratories in 19 countries or states. Microb Drug Resist 10(2):160–168

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sagar, S., Kaistha, S., Das, A.J., Kumar, R. (2019). Nanotechnology: A Twenty-First-Century Approach Towards the Control of Antibiotic-Resistant Bacteria. In: Antibiotic Resistant Bacteria: A Challenge to Modern Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-9879-7_10

Download citation

Publish with us

Policies and ethics