Skip to main content

Era of Antibiotic Discovery

  • Chapter
  • First Online:
  • 1112 Accesses

Abstract

Pre-antibiotic era was horribly threatened by deadly microbes. The therapeutic procedures were very painful at that time, and people had no option to get relief from infectious microbes. Fortunately, the field of medicine has been improved in the nineteenth century, and the occurrence of infectious diseases get limited. Apart from this, the discovery of antibiotic replaced the ancient medical practices and brought a hope of better life. Herein, in this chapter we have discussed about the history of medicine, discovery of antibiotics, and present scenario of medicine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham EP (1979) A glimpse of the early history of the cephalosporins. Rev Infect Dis 1(1):99–105

    CAS  PubMed  Google Scholar 

  • Aminov RI (2009) The role of antibiotics and antibiotic resistance in nature. Environ Microbiol 11(12):2970–2988

    CAS  PubMed  Google Scholar 

  • Amyes SG (2001) Magic bullets, lost horizons: the rise and fall of antibiotics. CRC Press, Boca Raton, pp 35–36

    Google Scholar 

  • Benbough J, Morrison GA (1965) Bacteriostatic actions of some tetracyclines. J Pharm Pharmacol 17(7):409–422

    CAS  PubMed  Google Scholar 

  • Bergmann ED, Sicher S (1952) Mode of action of chloramphenicol. Nature 170(4335):931

    CAS  PubMed  Google Scholar 

  • Cahn MM, Levy EJ, Actor P, Pauls JF (1974) Comparative serum levels and urinary recovery of cefazolin, cephaloridine, and cephalothin in man. J Clin Pharmacol 14:61–66

    CAS  PubMed  Google Scholar 

  • Cameron HC (1907) Lord Lister and the evolution of wound treatment during the last forty years: being the James Watson lectures delivered at the faculty of physicians and surgeons of Glasgow in February, 1906. Br Med J 1(2414):789

    CAS  PubMed  PubMed Central  Google Scholar 

  • CDC, National Centre for Health Statistics. Life Expectancy (2016). https://www.cdc.gov/nchs/fastats/life-expectancy.html. Accessed on 18 Dec 2018

  • Condie B (2016) World War One antiseptic may become 21st century savior. https://cosmosmagazine.com/biology/world-war-one-antiseptic-may-become-21st-century-saviour, News Biology. Access on 13 July 2018

  • Das AJ, Kumar R, Goutam SP, Sagar SS (2016) Sunlight irradiation induced synthesis of silver nanoparticles using glycolipid bio-surfactant and exploring the antibacterial activity. J Bioeng Biomed Sci 6:1–5

    CAS  Google Scholar 

  • Dillon HC, Derrick CW (1975) Clinical experience with clindamycin hydrochloride: I. treatment of streptococcal and mixed streptococcal-staphylococcal skin infections. Pediatrics 55(2):205–212

    CAS  PubMed  Google Scholar 

  • Du (2017) https://thedoctorweighsin.com/how-cupping-therapy-works-and-who-it-helps/. Accessed on 10 Dec 2019

  • Dubos RJ (1939) Studies on a bactericidal agent extracted from a soil bacillus: I. preparation of the agent. Its activity in vitro. J Exp Med 70(1):1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eardley WGP, Brown KV, Bonner TJ, Green AD, Clasper JC (2011) Infection in conflict wounded. Philos Trans R Soc B: Biol Sci 366(1562):204–218

    CAS  Google Scholar 

  • Fleming A (1915) On the bacteriology of septic wounds. Lancet 186(4803):638–643

    Google Scholar 

  • Fleming (1942). https://cosmosmagazine.com/biology/world-war-one-antiseptic-may-become-21st-century-saviour. News Biology 28 November 2016. Access on 13 July 2018

  • Gosio B (1893) Contributo all’etiologia della pellagra. Ricerche chimiche e batteriologiche sulle alterazioni del mais. G R Accad Med Torino 61:484–487

    Google Scholar 

  • Greenstone G (2010) The history of bloodletting. BC Med J 52(1):12–14

    Google Scholar 

  • Hartman B, Tomasz A (1981) Altered penicillin-binding proteins in methicillin-resistant strains of Staphylococcus aureus. Antimicrob Agents Chemother 19(5):726–735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henry RJ (1943) The mode of action of sulfonamides. Bacteriol Rev 7(4):175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin DC (1949) The X-ray analysis of the structure of penicillin. Adv Sci 6(22):85–89

    CAS  PubMed  Google Scholar 

  • Holloway WJ (1982) Spectinomycin. Med Clin North Am 66(1):169–173

    CAS  PubMed  Google Scholar 

  • Kawaguchi H (1976) Discovery, chemistry, and activity of amikacin. J Infect Dis 134(Suppl 2):S242–S248

    CAS  PubMed  Google Scholar 

  • Kaye D, Hurley JR, Lewis WM, Shinefield HR (1965) Treatment of urinary tract infection with ampicillin. Arch Intern Med 115(5):575–579

    CAS  PubMed  Google Scholar 

  • Kile RL, Rockwell EM, Schwarz J (1952) Use of neomycin in dermatology. J Am Med Assoc 148(5):339–343

    CAS  PubMed  Google Scholar 

  • Lind I (1997) Antimicrobial resistance in Neisseria gonorrhoeae. Clin Infect Dis 24(1):S93–S97

    CAS  PubMed  Google Scholar 

  • Lowy FD (2003) Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest 111(9):1265–1273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macfarlane G (1984) Alexander Fleming, the man and the myth. Harvard University Press, Cambridge

    Google Scholar 

  • Mailer JS, Mason B (2015) Penicillin: medicine’s wartime wonder drug and its production at Peoria, Illinois. Illinois Periodicals Online

    Google Scholar 

  • Manring MM, Hawk A, Calhoun JH, Andersen RC (2009) Treatment of war wounds: a historical review. Clin Orthop Relat Res 467(8):2168–2191

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGuire JM, Bunch RL, Anderson RC, Boaz HE, Flynn EH, Powell HM, Smith JW (1952) Ilotycin, a new antibiotic. Antibiot Chemother (Northfield, Ill) 2(6):281–283

    CAS  Google Scholar 

  • Nicolaou KC, Rigol S (2018) A brief history of antibiotics and select advances in their synthesis. J Antibiot 71(2):153

    CAS  Google Scholar 

  • Nodjimbadem K (2018). https://www.smithsonianmag.com/smithsonian-institution/how-world-war-i-impacted-modern-medicine-180962623. Access on 13 July 2018

  • Olszewska M (2006) Oxytetracycline – mechanism of action and application in skin diseases. Wiad Lek (Warsaw, Poland: 1960) 59(11–12):829–833

    Google Scholar 

  • Panlilio AL, Culver DH, Gaynes RP, Banerjee S, Henderson TS, Tolson JS, Martone WJ, National Nosocomial Infections Surveillance System (1992) Methicillin-resistant Staphylococcus aureus in US hospitals, 1975–1991. Infect Control Hosp Epidemiol 13(10):582–586

    CAS  PubMed  Google Scholar 

  • Parapia LA (2008) History of bloodletting by phlebotomy. Br J Haematol 143(4):490–495

    PubMed  Google Scholar 

  • Parashar UK, Kumar V, Bera T, Saxena PS, Nath G, Srivastava SK, Giri R, Srivastava A (2011) Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles. Nanotechnology 22(41):415104

    PubMed  Google Scholar 

  • Rammelkamp CH, Maxon T (1942) Resistance of Staphylococcus aureus to the action of penicillin. Proc Soc Exp Biol Med 51(3):386–389

    CAS  Google Scholar 

  • Rozgonyi F, Kiss J, Biacs P (1976) Mode of action of methicillin on Staphylococcus aureus. ZBL BAKT REIHE A 5(235):1063–1076

    CAS  Google Scholar 

  • Sagar SS, Kumar R, Kaistha SD (2017) Efficacy of phage and ciprofloxacin co-therapy on the formation and eradication of Pseudomonas aeruginosa biofilms. Arab J Sci Eng 42(1):95–103

    CAS  Google Scholar 

  • Saivin S, Houin G (1988) Clinical pharmacokinetics of doxycycline and minocycline. Clin Pharmacokinet 15(6):355–366

    CAS  PubMed  Google Scholar 

  • Schullian DM (1973) Notes and events: history of the word antibiotic. J Hist Med:284–286

    Google Scholar 

  • Sensi P (1983) History of the development of rifampin. Rev Infect Dis 5(Suppl 3):S402–S406

    CAS  PubMed  Google Scholar 

  • Sharma S, Prasad AN (2017) Inborn errors of metabolism and epilepsy: current understanding, diagnosis, and treatment approaches. Int J Mol Sci 18(7):1384. https://doi.org/10.3390/ijms18071384

    Article  CAS  PubMed Central  Google Scholar 

  • Sheehan JC, Henery-Logan KR (1957) The total synthesis of penicillin V. J Am Chem Soc 79(5):1262–1263

    CAS  Google Scholar 

  • Singh B, Vuddanda PR, Vijayakumar MR, Kumar V, Saxena PS, Singh S (2014) Cefuroxime axetil loaded solid lipid nanoparticles for enhanced activity against S. aureus biofilm. Colloids Surf B: Biointerfaces 121:92–98

    CAS  PubMed  Google Scholar 

  • Smith JL, Weinberg ED (1962) Mechanisms of antibacterial action of bacitracin. Microbiology 28(3):559–569

    CAS  Google Scholar 

  • Spencer JP (1998) Aminoglycosides: a practical review. Am Fam Physician 58(8):1811–1820

    PubMed  Google Scholar 

  • Staniforth DH, Jackson D, Clarke HL, Horton R (1983) Amoxicillin/clavulanic acid: the effect of probenecid. J Antimicrob Chemother 12(3):273–275

    CAS  PubMed  Google Scholar 

  • Stapley EO, Jackson M, Hernandez S, Zimmerman SB, Currie SA, Mochales S, Mata JM, Woodruff HB, Hendlin D (1972) Cephamycins, a new family of β-lactam antibiotics I. production by Actinomycetes, including Streptomyces lactamdurans sp. n. Antimicrob Agents Chemother 2(3):122–131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strepellone L (1986) Instruments for health: from origins to yesterday. Farmitalia Carlo Erba, Milan

    Google Scholar 

  • Turk JL, Allen E (1983) Bleeding and cupping. Ann R Coll Surg Engl 65(2):128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Umezawa H (1958) Kanamycin: its discovery. Ann N Y Acad Sci 76(2):20–26

    CAS  PubMed  Google Scholar 

  • Vuillemin JP (1980) Antibiose symbiose. Assoc Fr Avanc Sci 2:525–543

    Google Scholar 

  • Williamson GM (1957) The mode of action of streptomycin. J Pharm Pharmacol 9(1):433–445

    CAS  PubMed  Google Scholar 

  • Wong J (2003) Dr. Alexander Fleming and the discovery of penicillin. Prim Care Updat Ob/Gyns 10(3):124–126

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sagar, S., Kaistha, S., Das, A.J., Kumar, R. (2019). Era of Antibiotic Discovery. In: Antibiotic Resistant Bacteria: A Challenge to Modern Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-9879-7_1

Download citation

Publish with us

Policies and ethics