Skip to main content

Cervical Changes 1: Morphological and Biochemical Changes

  • Chapter
  • First Online:
Preterm Labor and Delivery

Part of the book series: Comprehensive Gynecology and Obstetrics ((CGO))

Abstract

Delivery progresses while contractions take place and the cervical canal ripens. This phenomenon can be compared to two wheels of a car. Contractions are induced by oxytocic substances, including prostaglandin (PG) F2α and oxytocin, while increased collagen degrading enzyme activity in the cervical canal promotes cervical ripening. These processes are positioned as deliberately programmed physiological inflammatory reactions in normal delivery. Intermediate modulators, including inflammatory cytokines, play the role of upstream regulators. Changes in endocrine profiles and extensive stimulation induce these intermediate modulators. In principle, the mechanism of premature delivery is the same as that of normal delivery. In premature delivery, however, the stimulation of intermediate modulators may cause infection/inflammation, such as chorioamnionitis and uteroplacental insufficiency. Recently, researchers have pointed out that decreased progesterone might induce premature delivery. Infection/inflammation, uteroplacental circulation insufficiency, and changes in hormone profiles that overwhelm the pregnancy-sustaining mechanism are factors that induce premature delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Christiaens I, Zaragoza DB, Guilbert L, Robertson SA, Mitchell BF, Olson DM. Inflammatory processes in preterm and term parturition. J Reprod Immunol. 2008;79(1):50–7. https://doi.org/10.1016/j.jri.2008.04.002.

    Article  CAS  PubMed  Google Scholar 

  2. Liggins GC, Forster CS, Grieves SA, et al. Control of parturition in man. Biol Reprod. 1977;16:39–56.

    Article  CAS  Google Scholar 

  3. Meadows JW, Pitzer B, Myatt L, et al. Expression and localization of adipophilin and perilipin in human fetal membranes: association with lipid bodies and enzymes involved in prostaglandin synthesis. J Clin Endocrinol Metab. 2005;90:2344–50.

    Article  CAS  Google Scholar 

  4. Chien EK, Macgregor C. Expression and regulation of the rat prostaglandin E2 receptor type 4 (EP4) in pregnant cervical tissue. Am J Obstet Gynecol. 2003;189:1501–10.

    Article  CAS  Google Scholar 

  5. Mitchell MD, Edwin SS, Lundin-Schiler S, Silver RM, Smotkin D, Tratman MS. Mechanism of interleukin-βstimulation of human amnion prostaglandin biosynthesis: mediation via a novel inducible cyclooxygenase. Placenta. 1993;14:615–25.

    Article  CAS  Google Scholar 

  6. Ghosh A, Lattey KR, Kelly AJ. Nitric oxide donors for cervical ripening and induction of labour. Cochrane Database Syst Rev. 2016;12:CD006901. https://doi.org/10.1002/14651858.CD006901.pub3.

    Article  PubMed  Google Scholar 

  7. McKee CM, Penno MB, Cowman M, et al. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. J Clin Invest. 1996;98:2403–13.

    Article  CAS  Google Scholar 

  8. Maradny E, Kanayama N, Terao T, et al. The role of hyaluronic acid as a mediator and regulator of cervical ripening. Hum Reprod. 1997;12:1080–8.

    Article  Google Scholar 

  9. Khatun S, Kanayama N, Md Belayet H, Yonezawa M, Kobayashi T, Terao T. Interleukin-8 potentiates the effect of interleukin-1-induced uterine contractions. Hum Reprod. 1999;14:560–5.

    Article  CAS  Google Scholar 

  10. Kelly RW. Pregnancy maintenance and parturition: the role of prostaglandin in manipulating the immune and inflammatory response. Endocr Rev. 1994;15:684–706.

    Article  CAS  Google Scholar 

  11. Pieber D, Allport VC, Hills F, et al. Interactions between progesterone receptor isoforms in myometrial cells in human labour. Mol Hum Reprod. 2001;7:875–9.

    Article  CAS  Google Scholar 

  12. Allport VC, Pierber D, Slater DM, et al. Human labour is associated with nuclear factor-kappa B activity which mediates cyclo-oxygenase-2 expression and is involved with the functional progesterone withdrawal. Mol Hum Reprod. 2001;7:581–6.

    Article  CAS  Google Scholar 

  13. Meis PJ, Klebanoff M, Thom E, et al. Prevention of recurrent preterm delivery by 17alpha-hydroxyprogesterone caproate. N Engl J Med. 2003;348:2379–85.

    Article  CAS  Google Scholar 

  14. McLean M, Bisits A, Davies J, Woods R, Lowry P, Smith R. A placental clock controlling the length of human pregnancy. Nat Med. 1995;1:460–3.

    Article  CAS  Google Scholar 

  15. Sorem KA, Smikle CB, Spencer DK, Yoder BA, Graveson MA, Siler-Khodr TM. Circulating maternal corticotropin-releasing hormone and gonadotropin-releasing hormone in normal and abnormal pregnancies. Am J Obstet Gynecol. 1996;175(4 Pt 1):912–6.

    Article  CAS  Google Scholar 

  16. Okunowo AA, Adegbola O, Ajayi GO. Evaluation of maternal serum levels of dehydroepiandrosterone sulphate and its association with successful labour outcome among parturients undergoing spontaneous labour at term. J Obstet Gynaecol. 2017;37(2):191–4. https://doi.org/10.1080/01443615.2016.1229278.

    Article  CAS  PubMed  Google Scholar 

  17. Yoshida M, Sagawa N, Itoh H, et al. Prostaglandin F (2alpha), cytokines and cyclic mechanical stretch augment matrix metalloproteinase-1 secretion from cultured human uterine cervical fibroblast cells. Mol Hum Reprod. 2002;8:681–7.

    Article  CAS  Google Scholar 

  18. Maehara K, Kanayama N, Terao T, et al. Down-regulation of IL-8 by human Kunitz-type trypsin inhibitor in HL-60 cells. Biochem Biophys Res Commun. 1995;206:927–34.

    Article  CAS  Google Scholar 

  19. Kaga N, Katsuki Y, Futamura Y, Obata M, Shibutani Y. Role of urinary trypsin inhibitor in the maintenance of pregnancy in mice. Obstet Gynecol. 1996;88:872–82.

    Article  CAS  Google Scholar 

  20. Katsuki Y, Kaga N, Kakinuma C, et al. Ability of intrauterine bacterial lipopolysaccharide to cause in situ uterine contractions in pregnant mice. Acta Obstet Gynecol Scand. 1997;76:26–32.

    Article  CAS  Google Scholar 

  21. Kanayama N, el Maradny E, Terao T, et al. Urinary trypsin inhibitor: a new drug to treat preterm labor: a comparative study with ritodrine. Eur J Obstet Gynecol Reprod Biol. 1996;67:133–8.

    Article  CAS  Google Scholar 

  22. Duley DJ, Collmer D, Mitchell MD, Trautman MS. Inflammatory cytokine m RNA in human gestational tissues: implications for term and preterm labor. J Soc Gynecol Investig. 1996;3:328–35.

    Article  Google Scholar 

  23. Kaga N, Katsuki Y, Futamura Y, et al. Usefulness of a new tactile sensor for measurement of uterine cervical ripening in mice in a quantitative and noninvasive manner. Am J Obstet Gynecol. 1996;88:872–82.

    Article  CAS  Google Scholar 

  24. Walia M, Saini N. Relationship between periodontal diseases and preterm birth: recent epidemiological and biological data. Int J Appl Basic Med Res. 2015;5:2–6.

    Article  Google Scholar 

  25. Loh K, Sivalingam N. Urinary tract infections in pregnancy. Malays Fam Physician. 2007;2(2):54–7.. eCollection 2007

    PubMed  PubMed Central  Google Scholar 

  26. Lockwood CJ. The initiation of parturition at term. Obstet Gynecol Clin N Am. 2004;31:935–47.

    Article  Google Scholar 

  27. Samo JL, Schatz F, Lockwood CJ, et al. Thrombin and interleukin-1beta regulate HOXA10 expression in human term decidual cells: implications for preterm labor. J Clin Endocrinol Metab. 2006;91(6):2366–72.

    Article  Google Scholar 

  28. Kozer E, Costei AM, Boskovic R, et al. Effects of aspirin consumption during pregnancy on pregnancy outcomes: meta-analysis. Birth Defects Res B Dev Reprod Toxicol. 2003;68:70–84.

    Article  CAS  Google Scholar 

  29. Rich-Edwards JW, Grizzard TA. Psychosocial stress and neuroendocrine mechanisms in preterm delivery. Am J Obstet Gynecol. 2005;192(5 Suppl):S30–5.

    Article  CAS  Google Scholar 

  30. Yellon SM. Contributions to the dynamics of cervix remodeling prior to term and preterm birth. Biol Reprod. 2017;96(1):13–23. https://doi.org/10.1095/biolreprod.116.142844.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naohiro Kanayama M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanayama, N. (2020). Cervical Changes 1: Morphological and Biochemical Changes. In: Sameshima, H. (eds) Preterm Labor and Delivery. Comprehensive Gynecology and Obstetrics. Springer, Singapore. https://doi.org/10.1007/978-981-13-9875-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9875-9_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9874-2

  • Online ISBN: 978-981-13-9875-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics