Skip to main content

Practical Applications of Bacteriophage Therapy: Biofilms to Bedside

  • Chapter
  • First Online:
Antibacterial Drug Discovery to Combat MDR

Abstract

As the golden age of antibiotics crumbles away in the face of untreatable bacterial infections arising globally, novel, safe, and adaptable therapies are essential. Bacteriophages, co-discovered over 100 years ago by Félix d’Herelle, were widely utilized before the antibiotic era. Unable to compete with antibiotics in terms of price, manufacturing ease, and safety, phage use was largely terminated in the West, though clinical use has continued in the Eastern bloc. With rampant fears of a post-antibiotic era, phage has gained traction in the West and appears the ideal weapon to employ alongside and in conjunction with antibiotics. Up to 80% of human infections are caused by bacterial biofilms, and select phages have been reported to break up these bacterial cities via polysaccharide depolymerases and lysins, though quorum sensing can reduce phage receptors and increase resistance. Phage antibiotic synergy has been observed with specific antibiotic classes, where low levels of antibiotics cause bacterial filamentation and increased bacterial killing by phage. What has arisen from numerous animal infection models is that early treatment (post-infection) is critical to phage efficacy. With phage now being recognized as part of the human microbiome, the anti-inflammatory and apparent tolerized immune response to bacteriophage is fitting, though there are inflammatory concerns with increased endotoxin levels remaining following phage purification. Recent clinical studies using phage against a vast array of infections highlight the translational promise of this therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon, S. T. (2016). Bacteriophage exploitation of bacterial biofilms: Phage preference for less mature targets? FEMS Microbiology Letters, 363(3), fnv246.

    Article  PubMed  CAS  Google Scholar 

  • Aghebati-Maleki, L., et al. (2016). Phage display as a promising approach for vaccine development. Journal of Biomedical Science, 23(1), 66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmad, S. I. (2002). Treatment of post-burns bacterial infections by bacteriophages, specifically ubiquitous Pseudomonas spp. notoriously resistant to antibiotics. Medical Hypotheses, 58(4), 327–331.

    Article  CAS  PubMed  Google Scholar 

  • Alemayehu, D., et al. (2012). Bacteriophages phiMR299-2 and phiNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells. MBio, 3(2), e00029–e00012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso, J. C., Sarachu, A. N., & Grau, O. (1981). DNA gyrase inhibitors block development of Bacillus subtilis bacteriophage SP01. Journal of Virology, 39(3), 855–860.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atterbury, R. J. (2009). Bacteriophage biocontrol in animals and meat products. Microbial Biotechnology, 2(6), 601–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu, S., et al. (2015). An in vivo wound model utilizing bacteriophage therapy of Pseudomonas aeruginosa biofilms. Ostomy/Wound Management, 61(8), 16–23.

    PubMed  Google Scholar 

  • Bearden, C. M., Agarwal, A., Book, B. K., Vieira, C. A., Sidner, R. A., Ochs, H. D., Young, M., & Pescovitz, M. D. (2005a). Rituximab inhibits the in vivo primary and secondary antibody responses to a neoantigen bacteriophage phi X174. American Journal of Transplantation, 5, 50–57.

    Article  CAS  PubMed  Google Scholar 

  • Bearden, C. M., et al. (2005b). Rituximab inhibits the in vivo primary and secondary antibody response to a neoantigen, bacteriophage phiX174. American Journal of Transplantation, 5(1), 50–57.

    Article  CAS  PubMed  Google Scholar 

  • Bedi, M. S., Verma, V., & Chhibber, S. (2009). Amoxicillin and specific bacteriophage can be used together for eradication of biofilm of Klebsiella pneumoniae B5055. World Journal of Microbiology and Biotechnology, 25, 1145–1151.

    Article  CAS  Google Scholar 

  • Biswas, B., et al. (2002). Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infection and Immunity, 70(1), 204–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bocian, K., et al. (2016). LPS-activated monocytes are unresponsive to T4 phage and T4-generated Escherichia coli lysate. Frontiers in Microbiology, 7, 1356.

    PubMed  PubMed Central  Google Scholar 

  • Borysowski, J., et al. (2010). The effects of T4 and A3/R phage preparations on whole-blood monocyte and neutrophil respiratory burst. Viral Immunology, 23(5), 541–544.

    Article  CAS  PubMed  Google Scholar 

  • Borysowski, J., et al. (2017). A3R phage and Staphylococcus aureus lysate do not induce neutrophil degranulation. Viruses, 9(2), E36.

    Article  PubMed  CAS  Google Scholar 

  • Breitbart, M., et al. (2003). Metagenomic analyses of an uncultured viral community from human feces. Journal of Bacteriology, 185(20), 6220–6223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, F., et al. (2015). Evaluation of the efficacy of a bacteriophage in the treatment of pneumonia induced by multidrug resistance Klebsiella pneumoniae in mice. BioMed Research International, 2015, 752930.

    PubMed  PubMed Central  Google Scholar 

  • Capparelli, R., et al. (2007). Experimental phage therapy against Staphylococcus aureus in mice. Antimicrobial Agents and Chemotherapy, 51(8), 2765–2773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carson, L., Gorman, S. P., & Gilmore, B. F. (2010). The use of lytic bacteriophages in the prevention and eradication of biofilms of Proteus mirabilis and Escherichia coli. FEMS Immunology and Medical Microbiology, 59(3), 447–455.

    Article  CAS  PubMed  Google Scholar 

  • Chan, B. K., et al. (2016). Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Scientific Reports, 6, 26717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao, L., Levin, B. R., & Stewart, F. M. (1977). A complex community in a simple habitat: An experimental study with bacteria and phage. Ecology, 58, 369–378.

    Article  Google Scholar 

  • Chaudhry, W. N., et al. (2017). Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. PLoS One, 12(1), e0168615.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng, M., et al. (2017). The bacteriophage EF-P29 efficiently protects against lethal vancomycin-resistant Enterococcus faecalis and alleviates gut microbiota imbalance in a murine bacteremia model. Frontiers in Microbiology, 8, 837.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chhibber, S., Kaur, T., & Sandeep, K. (2013). Co-therapy using lytic bacteriophage and linezolid: Effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections. PLoS One, 8(2), e56022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colomer-Lluch, M., et al. (2011). Bacteriophages carrying antibiotic resistance genes in fecal waste from cattle, pigs, and poultry. Antimicrobial Agents and Chemotherapy, 55(10), 4908–4911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comeau, A. M., et al. (2007). Phage-Antibiotic Synergy (PAS): Beta-lactam and quinolone antibiotics stimulate virulent phage growth. PLoS One, 2(8), e799.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Constantinou, A., et al. (1986). Involvement of host DNA gyrase in growth of bacteriophage T5. Journal of Virology, 57(3), 875–882.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coulter, L. B., et al. (2014). Effect of bacteriophage infection in combination with tobramycin on the emergence of resistance in Escherichia coli and Pseudomonas aeruginosa biofilms. Viruses, 6(10), 3778–3786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dabrowska, K. (2018). Interaction of bacteriophages with the immune system: Induction of bacteriophage-specific antibodies. Methods in Molecular Biology, 1693, 139–150.

    Article  CAS  PubMed  Google Scholar 

  • Dabrowska, K., et al. (2001). Current clinical application of bacteriophages and perspectives for their genetic modifications. Polskie Archiwum Medycyny Wewnętrznej, 105(1), 85–90.

    CAS  PubMed  Google Scholar 

  • Dabrowska, K., et al. (2014). Immunogenicity studies of proteins forming the T4 phage head surface. Journal of Virology, 88(21), 12551–12557.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dalmasso, M., Hill, C., & Ross, R. P. (2014). Exploiting gut bacteriophages for human health. Trends in Microbiology, 22(7), 399–405.

    Article  CAS  PubMed  Google Scholar 

  • Debarbieux, L., et al. (2010). Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. The Journal of Infectious Diseases, 201(7), 1096–1104.

    Article  CAS  PubMed  Google Scholar 

  • Drulis-Kawa, Z., et al. (2002). The sensitivity of the uropathogenic Escherichia coli strains to antibiotics, bacteriophages and bactericidal serum activity. Polski Merkuriusz Lekarski, 13(78), 470–472.

    PubMed  Google Scholar 

  • Duerkop, B. A., et al. (2016). Molecular basis for lytic bacteriophage resistance in enterococci. MBio, 7(4), e01304-16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Duerr, D. M., White, S. J., & Schluesener, H. J. (2004). Identification of peptide sequences that induce the transport of phage across the gastrointestinal mucosal barrier. Journal of Virological Methods, 116(2), 177–180.

    Article  CAS  PubMed  Google Scholar 

  • Duplessis, C., et al. (2017). Refractory pseudomonas bacteremia in a 2-year-old sterilized by bacteriophage therapy. Journal of the Pediatric Infectious Diseases Society, 7(3), 253–256.

    Article  Google Scholar 

  • Easwaran, M., et al. (2015). Functional characterization of a novel lytic phage EcSw isolated from Sus scrofa domesticus and its potential for phage therapy. Molecular and Cellular Probes, 29(3), 151–157.

    Article  CAS  PubMed  Google Scholar 

  • El-Shibiny, A., & El-Sahhar, S. (2017). Bacteriophages: The possible solution to treat infections caused by pathogenic bacteria. Canadian Journal of Microbiology, 63(11), 865–879.

    Article  CAS  PubMed  Google Scholar 

  • Escobar-Paramo, P., Gougat-Barbera, C., & Hochberg, M. E. (2012). Evolutionary dynamics of separate and combined exposure of Pseudomonas fluorescens SBW25 to antibiotics and bacteriophage. Evolutionary Applications, 5(6), 583–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Essoh, C., et al. (2013). The susceptibility of Pseudomonas aeruginosa strains from cystic fibrosis patients to bacteriophages. PLoS One, 8(4), e60575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fish, R., et al. (2016). Bacteriophage treatment of intransigent diabetic toe ulcers: A case series. Journal of Wound Care, 25(Suppl 7), S27–S33.

    Article  Google Scholar 

  • Fish, R., et al. (2018). Compassionate use of bacteriophage therapy for foot ulcer treatment as an effective step for moving toward clinical trials. Methods in Molecular Biology, 1693, 159–170.

    Article  CAS  PubMed  Google Scholar 

  • Forthal, D. N., & Moog, C. (2009). Fc receptor-mediated antiviral antibodies. Current Opinion in HIV and AIDS, 4(5), 388–393.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukuda, K., et al. (2012). Pseudomonas aeruginosa keratitis in mice: Effects of topical bacteriophage KPP12 administration. PLoS One, 7(10), e47742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furfaro, L. L., Chang, B. J., & Payne, M. S. (2017). Applications for bacteriophage therapy during pregnancy and the perinatal period. Frontiers in Microbiology, 8, 2660.

    Article  PubMed  Google Scholar 

  • Galtier, M., et al. (2017). Bacteriophages targeting adherent invasive Escherichia coli strains as a promising new treatment for Crohn’s disease. Journal of Crohn’s & Colitis, 11(7), 840–847.

    Google Scholar 

  • Gomez, P., & Buckling, A. (2011). Bacteria-phage antagonistic coevolution in soil. Science, 332(6025), 106–109.

    Article  CAS  PubMed  Google Scholar 

  • Gorski, A., & Weber-Dabrowska, B. (2005). The potential role of endogenous bacteriophages in controlling invading pathogens. Cellular and Molecular Life Sciences, 62(5), 511–519.

    Article  CAS  PubMed  Google Scholar 

  • Gorski, A., et al. (2006). Bacteriophages and transplantation tolerance. Transplantation Proceedings, 38(1), 331–333.

    Article  CAS  PubMed  Google Scholar 

  • Gorski, A., et al. (2012). Phage as a modulator of immune responses: Practical implications for phage therapy. Advances in Virus Research, 83, 41–71.

    Article  CAS  PubMed  Google Scholar 

  • Gorski, A., et al. (2016). Phage therapy: Combating infections with potential for evolving from merely a treatment for complications to targeting diseases. Frontiers in Microbiology, 7, 1515.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta, G. W., Wren, M., Ganguly, K., & Pardington, P. (2014). Multi-drug resistance efflux pumps confer additional resistance against host innate immune defense via induction of genes for biofilm formation and virulence. The Journal of Immunology, 192(1 Suppl), 132.3.

    Google Scholar 

  • Hamatake, R. K., Mukai, R., & Hayashi, M. (1981). Role of DNA gyrase subunits in synthesis of bacteriophage phi X174 viral DNA. Proceedings of the National Academy of Sciences of the United States of America, 78(3), 1532–1536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamzeh-Mivehroud, M., et al. (2008). Non-specific translocation of peptide-displaying bacteriophage particles across the gastrointestinal barrier. European Journal of Pharmaceutics and Biopharmaceutics, 70(2), 577–581.

    Article  CAS  PubMed  Google Scholar 

  • Hanlon, G. W., et al. (2001). Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology, 67(6), 2746–2753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashiguchi, S., et al. (2010). Immunological basis of M13 phage vaccine: Regulation under MyD88 and TLR9 signaling. Biochemical and Biophysical Research Communications, 402(1), 19–22.

    Article  CAS  PubMed  Google Scholar 

  • Henry, M., et al. (2012). Development of a high throughput assay for indirectly measuring phage growth using the OmniLog(TM) system. Bacteriophage, 2(3), 159–167.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heo, Y. J., et al. (2009). Antibacterial efficacy of phages against Pseudomonas aeruginosa infections in mice and Drosophila melanogaster. Antimicrobial Agents and Chemotherapy, 53(6), 2469–2474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodyra-Stefaniak, K., et al. (2015). Mammalian host-versus-phage immune response determines phage fate in vivo. Scientific Reports, 5, 14802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoyland-Kroghsbo, N. M., Maerkedahl, R. B., & Svenningsen, S. L. (2013). A quorum-sensing-induced bacteriophage defense mechanism. MBio, 4(1), e00362–e00312.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hraiech, S., Bregeon, F., & Rolain, J. M. (2015). Bacteriophage-based therapy in cystic fibrosis-associated Pseudomonas aeruginosa infections: Rationale and current status. Drug Design, Development and Therapy, 9, 3653–3663.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huff, W. E., et al. (2004). Therapeutic efficacy of bacteriophage and Baytril (enrofloxacin) individually and in combination to treat colibacillosis in broilers. Poultry Science, 83(12), 1944–1947.

    Article  CAS  PubMed  Google Scholar 

  • Human Microbiome Project Consortium. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207–214.

    Article  CAS  Google Scholar 

  • Hung, C. H., et al. (2011). Experimental phage therapy in treating Klebsiella pneumoniae-mediated liver abscesses and bacteremia in mice. Antimicrobial Agents and Chemotherapy, 55(4), 1358–1365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jerne, N. K. (1956). The presence in normal serum of specific antibody against bacteriophage T4 and its increase during the earliest stages of immunization. Journal of Immunology, 76(3), 209–216.

    CAS  Google Scholar 

  • Jerne, N. K., & Avegno, P. (1956). The development of the phage-inactivating properties of serum during the course of specific immunization of an animal: Reversible and irreversible inactivation. Journal of Immunology, 76(3), 200–208.

    CAS  Google Scholar 

  • Jikia, D., et al. (2005). The use of a novel biodegradable preparation capable of the sustained release of bacteriophages and ciprofloxacin, in the complex treatment of multidrug-resistant Staphylococcus aureus-infected local radiation injuries caused by exposure to Sr90. Clinical and Experimental Dermatology, 30(1), 23–26.

    Article  CAS  PubMed  Google Scholar 

  • Jonczyk-Matysiak, E., et al. (2015). The effect of bacteriophage preparations on intracellular killing of bacteria by phagocytes. Journal of Immunology Research, 2015, 482863.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jonczyk-Matysiak, E., et al. (2017). Phage-phagocyte interactions and their implications for phage application as therapeutics. Viruses, 9(6), 150.

    Article  PubMed Central  CAS  Google Scholar 

  • Jover, L. F., Cortez, M. H., & Weitz, J. S. (2013). Mechanisms of multi-strain coexistence in host–phage systems with nested infection networks. Journal of Theoretical Biology, 332, 65–77.

    Article  PubMed  Google Scholar 

  • Kamal, F., & Dennis, J. J. (2015). Burkholderia cepacia complex Phage-Antibiotic Synergy (PAS): Antibiotics stimulate lytic phage activity. Applied and Environmental Microbiology, 81(3), 1132–1138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamme, C. (1973). Antibodies against staphylococcal bacteriophages in human sera. I. Assay of antibodies in healthy individuals and in patients with staphylococcal infections. Acta Pathologica et Microbiologica Scandinavica. Section B: Microbiology and Immunology, 81(6), 741–748.

    CAS  Google Scholar 

  • Kaur, S., Harjai, K., & Chhibber, S. (2012). Methicillin-resistant Staphylococcus aureus phage plaque size enhancement using sublethal concentrations of antibiotics. Applied and Environmental Microbiology, 78(23), 8227–8233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur, S., Harjai, K., & Chhibber, S. (2016). In vivo assessment of phage and linezolid based implant coatings for treatment of Methicillin Resistant S. aureus (MRSA) mediated orthopaedic device related infections. PLoS One, 11(6), e0157626.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khalifa, L., et al. (2015). Targeting Enterococcus faecalis biofilms with phage therapy. Applied and Environmental Microbiology, 81(8), 2696–2705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirby, A. E. (2012). Synergistic action of gentamicin and bacteriophage in a continuous culture population of Staphylococcus aureus. PLoS One, 7(11), e51017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishor, C., et al. (2016). Phage therapy of staphylococcal chronic osteomyelitis in experimental animal model. The Indian Journal of Medical Research, 143(1), 87–94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kleinschmidt, W. J., Douthart, R. J., & Murphy, E. B. (1970). Interferon production by T4 coliphage. Nature, 228(5266), 27–30.

    Article  CAS  PubMed  Google Scholar 

  • Knezevic, P., et al. (2013). Phage-antibiotic synergism: A possible approach to combatting Pseudomonas aeruginosa. Research in Microbiology, 164(1), 55–60.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, S. D., et al. (2005). Neutrophils in the innate immune response. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 53(6), 505–517.

    CAS  Google Scholar 

  • Kucharewicz-Krukowska, A., & Slopek, S. (1987). Immunogenic effect of bacteriophages in patients subjected to phage therapy. Archivum Immunologiae et Therapiae Experimentalis, 35, 553–561.

    CAS  PubMed  Google Scholar 

  • Kumar, H., Kawai, T., & Akira, S. (2009). Toll-like receptors and innate immunity. Biochemical and Biophysical Research Communications, 388(4), 621–625.

    Article  CAS  PubMed  Google Scholar 

  • Kumaran, D., et al. (2018). Does treatment order matter? Investigating the ability of bacteriophage to augment antibiotic activity against Staphylococcus aureus biofilms. Frontiers in Microbiology, 9, 127.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari, S., Harjai, K., & Chhibber, S. (2011). Bacteriophage versus antimicrobial agents for the treatment of murine burn wound infection caused by Klebsiella pneumoniae B5055. Journal of Medical Microbiology, 60(Pt 2), 205–210.

    Article  PubMed  Google Scholar 

  • Kurzepa-Skaradzinska, A., et al. (2013). Influence of bacteriophage preparations on intracellular killing of bacteria by human phagocytes in vitro. Viral Immunology, 26(2), 150–162.

    Article  CAS  PubMed  Google Scholar 

  • Kutter, E. M., Kuhl, S. J., & Abedon, S. T. (2015). Re-establishing a place for phage therapy in western medicine. Future Microbiology, 10(5), 685–688.

    Article  CAS  PubMed  Google Scholar 

  • Latka, A., et al. (2017). Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Applied Microbiology and Biotechnology, 101(8), 3103–3119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le, T. S., et al. (2018). Protective effects of bacteriophages against Aeromonas hydrophila species causing Motile Aeromonas Septicemia (MAS) in striped catfish. Antibiotics (Basel), 7(1), E16.

    Article  CAS  Google Scholar 

  • Leitner, L., et al. (2017). Bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: A randomized, placebo-controlled, double-blind clinical trial. BMC Urology, 17(1), 90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Letkiewicz, S., et al. (2009). Eradication of Enterococcus faecalis by phage therapy in chronic bacterial prostatitis – Case report. Folia Microbiologia (Praha), 54(5), 457–461.

    Article  CAS  Google Scholar 

  • Levin, B. R., Stewart, F. M., & Chao, L. (1977). Resource-limited growth, competition, and predation: A model and experimental studies with bacteria and bacteriophage. The American Naturalist, 111, 3–24.

    Article  Google Scholar 

  • Lu, T. K., & Collins, J. J. (2009). Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4629–4634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majewska, J., et al. (2015). Oral application of T4 phage induces weak antibody production in the gut and in the blood. Viruses, 7(8), 4783–4799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik, R., & Chhibber, S. (2009). Protection with bacteriophage KO1 against fatal Klebsiella pneumoniae-induced burn wound infection in mice. Journal of Microbiology, Immunology, and Infection, 42(2), 134–140.

    PubMed  Google Scholar 

  • Mankiewicz, E., Kurti, V., & Adomonis, H. (1974). The effect of mycobacteriophage particles on cell-mediated immune reactions. Canadian Journal of Microbiology, 20(9), 1209–1218.

    Article  CAS  PubMed  Google Scholar 

  • Markoishvili, K., et al. (2002). A novel sustained-release matrix based on biodegradable poly(ester amide)s and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. International Journal of Dermatology, 41(7), 453–458.

    Article  CAS  PubMed  Google Scholar 

  • McVay, C. S., Velasquez, M., & Fralick, J. A. (2007). Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrobial Agents and Chemotherapy, 51(6), 1934–1938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer, J. R., et al. (2016). Ecological speciation of bacteriophage lambda in allopatry and sympatry. Science, 354(6317), 1301–1304.

    Article  CAS  PubMed  Google Scholar 

  • Miedzybrodzki, R., et al. (2008). Bacteriophage preparation inhibition of reactive oxygen species generation by endotoxin-stimulated polymorphonuclear leukocytes. Virus Research, 131(2), 233–242.

    Article  CAS  PubMed  Google Scholar 

  • Miedzybrodzki, R., et al. (2017). Means to facilitate the overcoming of gastric juice barrier by a therapeutic staphylococcal bacteriophage A5/80. Frontiers in Microbiology, 8, 467.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miernikiewicz, P., et al. (2013). T4 phage and its head surface proteins do not stimulate inflammatory mediator production. PLoS One, 8(8), e71036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minot, S., et al. (2011). The human gut virome: Inter-individual variation and dynamic response to diet. Genome Research, 21(10), 1616–1625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzaei, M. K., & Maurice, C. F. (2017). Menage a trois in the human gut: Interactions between host, bacteria and phages. Nature Reviews. Microbiology, 15(7), 397–408.

    Article  CAS  PubMed  Google Scholar 

  • Morello, E., et al. (2011). Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: First steps towards treatment and prevention. PLoS One, 6(2), e16963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morozova, V. V., et al. (2018). Bacteriophage treatment of infected diabetic foot ulcers. Methods in Molecular Biology, 1693, 151–158.

    Article  CAS  PubMed  Google Scholar 

  • Mulet, N., et al. (2018). Evaluating trifluridine + tipiracil hydrochloride in a fixed combination (TAS-102) for the treatment of colorectal cancer. Expert Opinion on Pharmacotherapy, 19(6), 623–629.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, S., et al. (2017). Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. MBio, 8(6), e01874-17.

    Article  PubMed  PubMed Central  Google Scholar 

  • NIAID. (2014). NIAID’s antibacterial program: Current status and future directions. National Institute of Allergy and Infectious Diseases.

    Google Scholar 

  • Ochs, H. D., Davis, S. D., & Wedgwood, R. J. (1971). Immunologic responses to bacteriophage phi-X 174 in immunodeficiency diseases. The Journal of Clinical Investigation, 50(12), 2559–2568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oechslin, F., et al. (2017). Synergistic interaction between phage therapy and antibiotics clears Pseudomonas Aeruginosa infection in endocarditis and reduces virulence. The Journal of Infectious Diseases, 215(5), 703–712.

    CAS  PubMed  Google Scholar 

  • Oh, J., et al. (2014). Biogeography and individuality shape function in the human skin metagenome. Nature, 514(7520), 59–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne, R. J., & Jansen, V. A. (2001). Understanding bacteriophage therapy as a density-dependent kinetic process. Journal of Theoretical Biology, 208(1), 37–48.

    Article  CAS  PubMed  Google Scholar 

  • Piggott, J. J., Townsend, C. R., & Matthaei, C. D. (2015). Reconceptualizing synergism and antagonism among multiple stressors. Ecology and Evolution, 5(7), 1538–1547.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pincus, N. B., et al. (2015). Strain specific phage treatment for Staphylococcus aureus infection is influenced by host immunity and site of infection. PLoS One, 10(4), e0124280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pires, D. P., et al. (2015). Phage therapy: A step forward in the treatment of Pseudomonas aeruginosa infections. Journal of Virology, 89(15), 7449–7456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pires, D. P., et al. (2017). Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Current Opinion in Microbiology, 39, 48–56.

    Article  CAS  PubMed  Google Scholar 

  • Przerma, A., Kniotek, M., Nowaczyk, M., Weber-Dabrowska, B., Switala-Jelen, K., Dabrowska, K., & Gorski, A. (2005). Bacteriophages inhibit interleukin-2 production by human T lymphocytes. 12th congress of the European Society for Organ Transplantation, Geneva, Switzerland.

    Google Scholar 

  • Regeimbal, J. M., et al. (2016). Personalized therapeutic cocktail of wild environmental phages rescues mice from Acinetobacter baumannii wound infections. Antimicrobial Agents and Chemotherapy, 60(10), 5806–5816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhoads, D. D., et al. (2009). Bacteriophage therapy of venous leg ulcers in humans: Results of a phase I safety trial. Journal of Wound Care, 18(6), 237–238. 240–3.

    Article  CAS  PubMed  Google Scholar 

  • Roach, D. R., et al. (2017). Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host & Microbe, 22(1), 38–47.e4.

    Article  CAS  Google Scholar 

  • Ronayne, E. A., et al. (2016). P1 ref endonuclease: A molecular mechanism for phage-enhanced antibiotic lethality. PLoS Genetics, 12(1), e1005797.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rose, T., et al. (2014). Experimental phage therapy of burn wound infection: Difficult first steps. The International Journal of Burns and Trauma, 4(2), 66–73.

    PubMed  Google Scholar 

  • Ryan, E. M., et al. (2012). Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro. FEMS Immunology and Medical Microbiology, 65(2), 395–398.

    Article  CAS  PubMed  Google Scholar 

  • Sabouri, S., et al. (2017). A minireview on the in vitro and in vivo experiments with anti-Escherichia coli O157: H7 phages as potential biocontrol and phage therapy agents. International Journal of Food Microbiology, 243, 52–57.

    Article  CAS  PubMed  Google Scholar 

  • Sahota, J. S., et al. (2015). Bacteriophage delivery by nebulization and efficacy against phenotypically diverse Pseudomonas aeruginosa from cystic fibrosis patients. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 28(5), 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Sarker, S. A., et al. (2016). Oral phage therapy of acute bacterial diarrhea with two Coliphage preparations: A randomized trial in children from Bangladesh. eBioMedicine, 4, 124–137.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saussereau, E., et al. (2014). Effectiveness of bacteriophages in the sputum of cystic fibrosis patients. Clinical Microbiology and Infection, 20(12), O983–O990.

    Article  CAS  PubMed  Google Scholar 

  • Schooley, R. T., et al. (2017). Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrobial Agents and Chemotherapy, 61(10), e00954-17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sender, R., Fuchs, S., & Milo, R. (2016). Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell, 164(3), 337–340.

    Article  CAS  PubMed  Google Scholar 

  • Shan, J., et al. (2018). Bacteriophages are more virulent to bacteria with human cells than they are in bacterial culture; insights from HT-29 cells. Scientific Reports, 8(1), 5091.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sokoloff, A. V., et al. (2000). The interactions of peptides with the innate immune system studied with use of T7 phage peptide display. Molecular Therapy, 2(2), 131–139.

    Article  CAS  PubMed  Google Scholar 

  • Solodovnikov Iu, P., et al. (1971). Preventive use of dry polyvalent dysentery bacteriophage in preschool institutions. II. Principles of present-day tactics and application schedule of bacteriophage. Zhurnal Mikrobiologii, Epidemiologii, i Immunobiologii, 48(2), 123–127.

    CAS  Google Scholar 

  • Soudeiha, M. A. H., et al. (2017). In vitro evaluation of the colistin-carbapenem combination in clinical isolates of A. baumannii using the checkerboard, Etest, and time-kill curve techniques. Frontiers in Cellular and Infection Microbiology, 7, 209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srivastava, A. S., Chauhan, D. P., & Carrier, E. (2004a). In utero detection of T7 phage after systemic administration to pregnant mice. BioTechniques, 37(1), 81–83.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, A. S., Kaido, T., & Carrier, E. (2004b). Immunological factors that affect the in vivo fate of T7 phage in the mouse. Journal of Virological Methods, 115(1), 99–104.

    Article  CAS  PubMed  Google Scholar 

  • Sulakvelidze, A., & Barrow, P. A. (2005). Phage therapy in animals and agribusiness. In E. Kutter & A. Sulakvelidze (Eds.), Bacteriophages. Biology and applications. Boca Raton: CRC Press.

    Google Scholar 

  • Sunagar, R., Patil, S. A., & Chandrakanth, R. K. (2010). Bacteriophage therapy for Staphylococcus aureus bacteremia in streptozotocin-induced diabetic mice. Research in Microbiology, 161(10), 854–860.

    Article  PubMed  Google Scholar 

  • Tikhonenko, A. S., et al. (1976). Electron-microscopic study of the serological affinity between the antigenic components of phages T4 and DDVI. Molekuliarnaia Biologiia (Mosk), 10(4), 667–673.

    CAS  Google Scholar 

  • Tiwari, B. R., et al. (2011). Antibacterial efficacy of lytic Pseudomonas bacteriophage in normal and neutropenic mice models. Journal of Microbiology, 49(6), 994–999.

    Article  CAS  PubMed  Google Scholar 

  • Torres-Barcelo, C., et al. (2014). A window of opportunity to control the bacterial pathogen Pseudomonas aeruginosa combining antibiotics and phages. PLoS One, 9(9), e106628.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Belleghem, J. D., et al. (2017). Pro- and anti-inflammatory responses of peripheral blood mononuclear cells induced by Staphylococcus aureus and Pseudomonas aeruginosa phages. Scientific Reports, 7(1), 8004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verma, V., Harjai, K., & Chhibber, S. (2009). Restricting ciprofloxacin-induced resistant variant formation in biofilm of Klebsiella pneumoniae B5055 by complementary bacteriophage treatment. The Journal of Antimicrobial Chemotherapy, 64(6), 1212–1218.

    Article  CAS  PubMed  Google Scholar 

  • Verma, V., Harjai, K., & Chhibber, S. (2010). Structural changes induced by a lytic bacteriophage make ciprofloxacin effective against older biofilm of Klebsiella pneumoniae. Biofouling, 26(6), 729–737.

    Article  CAS  PubMed  Google Scholar 

  • Virgin, H. W. (2014). The virome in mammalian physiology and disease. Cell, 157(1), 142–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warner, N., & Nunez, G. (2013). MyD88: A critical adaptor protein in innate immunity signal transduction. Journal of Immunology, 190(1), 3–4.

    Article  CAS  Google Scholar 

  • Watanabe, R., et al. (2007). Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrobial Agents and Chemotherapy, 51(2), 446–452.

    Article  CAS  PubMed  Google Scholar 

  • Waterbury, J. B., & Valois, F. W. (1993). Resistance to co-occurring phages enables marine synechococcus communities to coexist with cyanophages abundant in seawater. Applied and Environmental Microbiology, 59(10), 3393–3399.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber-Dabrowska, B., Zimecki, M., & Mulczyk, M. (2000a). Effective phage therapy is associated with normalization of cytokine production by blood cell cultures. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 48(1), 31–37.

    CAS  Google Scholar 

  • Weber-Dabrowska, B., Mulczyk, M., & Gorski, A. (2000b). Bacteriophage therapy of bacterial infections: An update of our institute’s experience. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 48(6), 547–551.

    CAS  Google Scholar 

  • Weissman, J. L., et al. (2018). Immune loss as a driver of coexistence during host-phage coevolution. The ISME Journal, 12(2), 585–597.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright, A., et al. (2009). A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clinical Otolaryngology, 34(4), 349–357.

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz, C., et al. (2013). Bacteriophage therapy in implant-related infections: An experimental study. The Journal of Bone and Joint Surgery. American Volume, 95(2), 117–125.

    Article  PubMed  Google Scholar 

  • Yu, L., et al. (2018). A guard-killer phage cocktail effectively lyses the host and inhibits the development of phage-resistant strains of Escherichia coli. Applied Microbiology and Biotechnology, 102(2), 971–983.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Q. G., & Buckling, A. (2012). Phages limit the evolution of bacterial antibiotic resistance in experimental microcosms. Evolutionary Applications, 5(6), 575–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimecki, M., et al. (2003). Bacteriophages provide regulatory signals in mitogen-induced murine splenocyte proliferation. Cellular & Molecular Biology Letters, 8(3), 699–711.

    Google Scholar 

Download references

Disclaimer

This work was supported/funded by work unit number A1232. The views expressed are those of the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Army, Department of Defense, nor the US Government. Some authors are service members of the US Government. This work was prepared as part of their official duties. Title 17 U.S.C. §105 provides that “Copyright protection under this title is not available for any work of the United States Government.” Title 17 U.S.C. §101 defines a US Government work as a work prepared by a military service member or employee of the US Government as part of that person’s official duties.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jacobs, A.C. et al. (2019). Practical Applications of Bacteriophage Therapy: Biofilms to Bedside. In: Ahmad, I., Ahmad, S., Rumbaugh, K. (eds) Antibacterial Drug Discovery to Combat MDR. Springer, Singapore. https://doi.org/10.1007/978-981-13-9871-1_21

Download citation

Publish with us

Policies and ethics