Skip to main content

Part of the book series: Springer Aerospace Technology ((SAT))

  • 743 Accesses

Abstract

This chapter presents the general formulation of the trajectory optimization problems. To describe the multi-phase SMV skip entry problem, a new nonlinear constrained optimal control model is established. The constructed formulation contains multiple exo-atmospheric and atmospheric flight phases and correspondingly, two sets of flight dynamics. In addition, in order to guide the SMV overflying different target altitude points, a series of event sequences is constructed and embedded in the proposed formulation. A couple of interior-point constraints are also introduced so as to enhance the continuity of the trajectory between different flight phases. Following the construction of the optimal control model, a multi-phase global collocation technique is applied to discretize the continuous-time system. Initial simulations and different case studies are carried out. The obtained results reveal that it is feasible to use the proposed multi-phase optimal control formulation for fulfilling the multi-phase SMV skip entry mission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Conway, B.A.: A survey of methods available for the numerical optimization of continuous dynamic systems. J. Optim. Theory Appl. 152(2), 271–306 (2012). https://doi.org/10.1007/s10957-011-9918-z

    Article  MathSciNet  MATH  Google Scholar 

  2. Betts, J.T., Huffman, W.P.: Mesh refinement in direct transcription methods for optimal control. Optim. Control. Appl. Methods 19(1), 1–21 (1998)

    Article  MathSciNet  Google Scholar 

  3. Ross, I.M.: A Primer on Pontryagin’s Principle in Optimal Control. Collegiate Publishers, CA (2015)

    Google Scholar 

  4. Jorris, T.R., Cobb, R.G.: Multiple method 2-D trajectory optimization satisfying waypoints and no-fly zone constraints. J. Guid. Control. Dyn. 31(3), 543–553 (2008). https://doi.org/10.2514/1.32354

    Article  Google Scholar 

  5. Jorris, T.R., Cobb, R.G.: Three-dimensional trajectory optimization satisfying waypoint and no-fly zone constraints. J. Guid. Control. Dyn. 32(2), 551–572 (2009). https://doi.org/10.2514/1.37030

    Article  Google Scholar 

  6. Weiss, A., Baldwin, M., Erwin, R.S., Kolmanovsky, I.: Model predictive control for spacecraft rendezvous and docking: strategies for handling constraints and case studies. IEEE Trans. Control. Syst. Technol. 23(4), 1638–1647 (2015). https://doi.org/10.1109/TCST.2014.2379639

    Article  Google Scholar 

  7. Zhang, H., Zhang, X.: Pointwise second-order necessary conditions for stochastic optimal controls, part i: the case of convex control constraint. SIAM J. Control. Optim. 53(4), 2267–2296 (2015). https://doi.org/10.1137/14098627X

    Article  MathSciNet  MATH  Google Scholar 

  8. Boccia, A., de Pinho, M., Vinter, R.: Optimal control problems with mixed and pure state constraints. SIAM J. Control. Optim. 54(6), 3061–3083 (2016). https://doi.org/10.1137/15M1041845

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonnans, J., Festa, A.: Error estimates for the euler discretization of an optimal control problem with first-order state constraints. SIAM J. Numer. Anal. 55(2), 445–471 (2017). https://doi.org/10.1137/140999621

    Article  MathSciNet  MATH  Google Scholar 

  10. Cai, W.W., Zhu, Y.W., Yang, L.P., Zhang, Y.W.: Optimal guidance for hypersonic reentry using inversion and receding horizon control. IET Control. Theory Appl. 9(9), 1347–1355 (2015). https://doi.org/10.1049/iet-cta.2014.1155

    Article  MathSciNet  Google Scholar 

  11. Robert, W., Mark, A., Jeffrey, B., Robert, W., Mark, A., Jeffrey, B.: Minimum heating reentry trajectories for advanced hypersonic launch vehicles. In: Guidance, Navigation, and Control and Co-located Conferences. American Institute of Aeronautics and Astronautics (1997). https://doi.org/10.2514/6.1997-3535

  12. Hu, C.F., Xin, Y.: Reentry trajectory optimization for hypersonic vehicles using fuzzy satisfactory goal programming method. Int. J. Autom. Comput. 12(2), 171–181 (2015)

    Article  Google Scholar 

  13. Chai, R., Savvaris, A., Tsourdos, A.: Fuzzy physical programming for space manoeuvre vehicles trajectory optimization based on hp-adaptive pseudospectral method. Acta Astronaut. 123, 62–70 (2016). https://doi.org/10.1016/j.actaastro.2016.02.020

    Article  Google Scholar 

  14. Englander, J.A., Conway, B.A.: Automated solution of the low-thrust interplanetary trajectory problem. J. Guid. Control. Dyn. 40(1), 15–27 (2017). https://doi.org/10.2514/1.G002124

    Article  Google Scholar 

  15. Rao, A.V., Tang, S., Hallman, W.P.: Numerical optimization study of multiple-pass aeroassisted orbital transfer. Optim. Control. Appl. Methods 23(4), 215–238 (2002). https://doi.org/10.1002/oca.711

    Article  MathSciNet  MATH  Google Scholar 

  16. Pontani, M., Conway, B.A.: Particle swarm optimization applied to space trajectories. J. Guid. Control. Dyn. 33(5), 1429–1441 (2010). https://doi.org/10.2514/1.48475

    Article  Google Scholar 

  17. Pontani, M., Conway, B.A.: Particle swarm optimization applied to impulsive orbital transfers. Acta Astronaut. 74, 141–155 (2012). https://doi.org/10.1016/j.actaastro.2011.09.007

    Article  Google Scholar 

  18. Rao, A.V.: A survey of numerical methods for optimal control. Adv. Astronaut. Sci. 135(1) (2009)

    Google Scholar 

  19. Ambrosino, G., Ariola, M., Ciniglio, U., Corraro, F., Lellis, E.D., Pironti, A.: Path generation and tracking in 3-d for uavs. IEEE Trans. Control Syst. Technol. 17(4), 980–988 (2009). https://doi.org/10.1109/TCST.2009.2014359

    Article  Google Scholar 

  20. Wang, Y., Wang, S., Tan, M., Zhou, C., Wei, Q.: Real-time dynamic dubins-helix method for 3-d trajectory smoothing. IEEE Trans. Control Syst. Technol. 23(2), 730–736 (2015). https://doi.org/10.1109/TCST.2014.2325904

    Article  Google Scholar 

  21. Ma, X., Jiao, Z., Wang, Z., Panagou, D.: 3-d decentralized prioritized motion planning and coordination for high-density operations of micro aerial vehicles. IEEE Trans. Control Syst. Technol. 26(3), 939–953 (2018). https://doi.org/10.1109/TCST.2017.2699165

    Article  Google Scholar 

  22. Chai, R., Savvaris, A., Tsourdos, A.: Violation learning differential evolution-based hp-adaptive pseudospectral method for trajectory optimization of space maneuver vehicle. IEEE Trans. Aerosp. Electron. Syst. 53(4), 2031–2044 (2017). https://doi.org/10.1109/TAES.2017.2680698

    Article  Google Scholar 

  23. Chai, R., Savvaris, A., Tsourdos, A., Chai, S., Xia, Y.: Improved gradient-based algorithm for solving aeroassisted vehicle trajectory optimization problems. J. Guid. Control. Dyn. 40(8), 2093–2101 (2017). https://doi.org/10.2514/1.G002183

    Article  Google Scholar 

  24. Duan, H., Li, S.: Artificial bee colony based direct collocation for reentry trajectory optimization of hypersonic vehicle. IEEE Trans. Aerosp. Electron. Syst. 51(1), 615–626 (2015). https://doi.org/10.1109/TAES.2014.120654

    Article  Google Scholar 

  25. Senses, B., Rao, A.V.: Optimal finite-thrust small spacecraft aeroassisted orbital transfer. J. Guid. Control. Dyn. 36(6), 1802–1810 (2013). https://doi.org/10.2514/1.58977

    Article  Google Scholar 

  26. Chai, R., Savvaris, A., Tsourdos, A., Chai, S.: Multi-objective trajectory optimization of space manoeuvre vehicle using adaptive differential evolution and modified game theory. Acta Astronaut. 136, 273–280 (2017). https://doi.org/10.1016/j.actaastro.2017.02.023

    Article  Google Scholar 

  27. Benson, D.A., Huntington, G.T., Thorvaldsen, T.P., Rao, A.V.: Direct trajectory optimization and costate estimation via an orthogonal collocation method. J. Guid. Control. Dyn. 29(6), 1435–1440 (2006). https://doi.org/10.2514/1.20478

    Article  Google Scholar 

  28. Darby, C.L., Hager, W.W., Rao, A.V.: Direct trajectory optimization using a variable low-order adaptive pseudospectral method. J. Spacecr. Rocket. 48(3), 433–445 (2011). https://doi.org/10.2514/1.52136

    Article  Google Scholar 

  29. Driver, K., Jordaan, K., Mbuyi, N.: Interlacing of the zeros of jacobi polynomials with different parameters. Numer. Algorithms 49(1), 143–152 (2008). https://doi.org/10.1007/s11075-008-9162-2

    Article  MathSciNet  MATH  Google Scholar 

  30. Gong, Q., Fahroo, F., Ross, I.M.: Spectral algorithm for pseudospectral methods in optimal control. J. Guid. Control. Dyn. 31(3), 460–471 (2008). https://doi.org/10.2514/1.32908

    Article  Google Scholar 

  31. Hager, W.W., Hou, H., Rao, A.V.: Convergence rate for a Gauss collocation method applied to unconstrained optimal control. J. Optim. Theory Appl. 1–24, (2016). https://doi.org/10.1007/s10957-016-0929-7

    Article  MathSciNet  Google Scholar 

  32. Garg, D., Patterson, M., Hager, W.W., Rao, A.V., Benson, D.A., Huntington, G.T.: A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica 46(11), 1843–1851 (2010). https://doi.org/10.1016/j.automatica.2010.06.048

    Article  MathSciNet  MATH  Google Scholar 

  33. Williams, P.: Jacobi pseudospectral method for solving optimal control problems. J. Guid. Control. Dyn. 27(2), 293–297 (2004). https://doi.org/10.2514/1.4063

    Article  Google Scholar 

  34. Shi, P.: Limit Hamilton-Jacobi-Isaacs equations for singularly perturbed zero-sum dynamic (discrete time) games. SIAM J. Control. Optim. 41(3), 826–850 (2002). https://doi.org/10.1137/s036301290037908x

    Article  MathSciNet  MATH  Google Scholar 

  35. Chai, R., Savvaris, A., Tsourdos, A.: Analysis of optimization strategies for solving space manoeuvre vehicle trajectory optimization problem, pp. 515–527. Springer International Publishing (2018)

    Google Scholar 

  36. Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  37. Liu, F., Hager, W.W., Rao, A.V.: Adaptive mesh refinement method for optimal control using nonsmoothness detection and mesh size reduction. J. Frankl. Inst. 352(10), 4081–4106 (2015). https://doi.org/10.1016/j.jfranklin.2015.05.028

    Article  MathSciNet  MATH  Google Scholar 

  38. Taheri, E., Abdelkhalik, O.: Fast initial trajectory design for low-thrust restricted-three-body problems. J. Guid. Control. Dyn. 38(11), 2146–2160 (2015). https://doi.org/10.2514/1.G000878

    Article  Google Scholar 

  39. Patterson, M.A., Hager, W.W., Rao, A.V.: A ph mesh refinement method for optimal control. Optim. Control. Appl. Methods 36(4), 398–421 (2015). https://doi.org/10.1002/oca.2114

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhao, Y., Tsiotras, P.: Density functions for mesh refinement in numerical optimal control. J. Guid. Control. Dyn. 34(1), 271–277 (2011). https://doi.org/10.2514/1.45852

    Article  Google Scholar 

  41. Chai, R., Savvaris, A., Tsourdos, A., Chai, S., Xia, Y.: Optimal fuel consumption finite-thrust orbital hopping of aeroassisted spacecraft. Aerosp. Sci. Technol. 75, 172–182 (2018). https://doi.org/10.1016/j.ast.2017.12.026

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runqi Chai .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chai, R., Savvaris, A., Tsourdos, A., Chai, S. (2020). Modeling of the Trajectory Optimization Problems. In: Design of Trajectory Optimization Approach for Space Maneuver Vehicle Skip Entry Problems. Springer Aerospace Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9845-2_3

Download citation

Publish with us

Policies and ethics