Skip to main content

Nanomaterials for Removal of Toxic Metals Ions from the Water

  • Chapter
  • First Online:
Nanomaterials for Healthcare, Energy and Environment

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 118))

Abstract

The rapid deterioration in water quality has become a global concern. Heavy metal ions are the most dangerous water pollutants for living organisms; hence, there is a necessity to remove these toxic pollutants from water. Traditional water purification methods are expensive and inefficient to provide adequate quality of water. In the past few decades, nanotechnology has gained remarkable attention in many areas including water purification processes. Nanomaterials have unique properties such as greater surface area, exceptional adsorption capability and high selectivity which make them more promising materials for removal of heavy metal ions, and other pollutants from water. Nanomaterials are capable of removing toxic metal ions with high efficiency and selectivity even at their lower concentration. This chapter gives an overview of various nanomaterials especially carbon nanomaterials (e.g., graphene and carbon nanotubes) for the removal of highly toxic metal ions such as arsenic (As5+), lead (Pb2+), cadmium (Cd2+), and mercury (Hg, Hg2+) from water. This chapter will also highlight the toxic effects and main barriers of nanomaterials in sustainable water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akasaka T, Watari F (2009) Capture of bacteria by flexible carbon nanotubes. Acta Biomater 5:607–612

    Article  CAS  Google Scholar 

  • Alekseeva OV, Bagrovskaya NA, Noskov AV (2016) Sorption of heavy metal ions by fullerene and polystyrene/fullerene film composite. Prot Met Phys Chem Surf 52(3):443–447

    Article  CAS  Google Scholar 

  • Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112:5073–5091

    Article  CAS  Google Scholar 

  • Ali I, Khan TA, Asim M (2011) Removal of arsenic from water by electrocoagulation and electrodialysis techniques. Sep Purif Rev 40:25–42

    Article  CAS  Google Scholar 

  • Ali I, Alothman ZA, Alwarthan A (2017) Supra molecular mechanism of the removal of 17-β-estradiol endocrine disturbing pollutant from water on functionalized iron nano particles. J Mol Liq 441:123–129

    Article  CAS  Google Scholar 

  • Ali I, Alharbi O, Alothman ML, Badjah ZA, Alwarthan AY, Basheer AAA (2018) Artificial neural network modelling of amido black dye sorption on iron composite nano material. Kinetics and thermodynamics studies. J Mol Liq 250:1–8

    Article  CAS  Google Scholar 

  • Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng. https://doi.org/10.1155/2014/825910

    Article  CAS  Google Scholar 

  • Anitha K, Namsani S, Singh JK (2015) Removal of heavy metal ions using a functionalized single-walled carbon nanotube: a molecular dynamics study. J Phys Chem A 119:8349–8358

    Article  CAS  Google Scholar 

  • Arias M, Barral MT, Mejuto JC (2002) Enhancement of coper and cadmium adsorption on kaolin by the presence of humic acids. Chemosphere 48:1081–1088

    Article  CAS  Google Scholar 

  • Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1:60–65

    Article  CAS  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377

    Article  CAS  Google Scholar 

  • Binns C (2010) Introduction to nanoscience and nanotechnology. Wiley, New York

    Book  Google Scholar 

  • Bolisetty S, Mohammad P, Raffaele M (2019) Sustainable technologies for water purification from heavy metals: review and analysis. Chem Soc Rev 48:463–487

    Article  CAS  Google Scholar 

  • Bottero JY, Rose J, Wiesner MR (2006) Nanotechnologies: tools for sustainability in a new wave of water treatment processes. Integr Environ Assess Manag 2:391–395

    Article  CAS  Google Scholar 

  • Cao AM, Monnell JD, Matranga C, Wu JM, Cao LL, Gao D (2007) Hierarchical nanostructured copper oxide and its application in arsenic removal. J Phys Chem C 111:18624–18628

    Article  CAS  Google Scholar 

  • Carpenter AW, de Lannoy CF, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49:5277–5287

    Article  CAS  Google Scholar 

  • Chen C, Hu J, Shao D, Li J, Wang X (2009) Adsorption behavior of multi-wall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II). J Hazard Mater 164:923–928

    Article  CAS  Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1160

    Article  CAS  Google Scholar 

  • Coston JA, Fuller CC, Davis JA (1995) Pb2+ and Zn2+ adsorption by a natural aluminum- and iron-bearing surface coating on an aquifer sand. Geochim Cosmochim Acta 59:3535–3547

    Article  CAS  Google Scholar 

  • Cui L, Wang Y, Gao L, Hu L, Yan L, Wei Q, Du B (2015) EDTA functionalized magnetic graphene oxide for removal of Pb (II), Hg (II) and Cu (II) in water treatment: Adsorption mechanism and separation property. Chem Eng J 281:1–10

    Article  CAS  Google Scholar 

  • Damia B (ed) (2005) Emerging organic pollutants in waste waters and sludge. Springer, New York

    Google Scholar 

  • De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  CAS  Google Scholar 

  • Deng LP, Su YY, Su H, Wang XT, Zhu XB (2007) Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J Hazard Mater 143:220–225

    Article  CAS  Google Scholar 

  • Diniz CV, Doyle FM, Ciminelli VST (2002) Effect of pH on the adsorption of selected heavy metal ions from concentrated chloride solutions by the chelating resin dowex M-4195. Sep Sci Technol 37:3169–3185

    Article  CAS  Google Scholar 

  • Duffus JH (2002) Heavy metals-a meaningless term? Pure Appl Chem 74:793–807

    Article  CAS  Google Scholar 

  • El-Sheikh AH (2008) Effect of oxidation of activated carbon on its enrichment efficiency of metal ions: comparison with oxidized and non-oxidized multi-walled carbon nanotubes. Talanta 75:127–134

    Article  CAS  Google Scholar 

  • Fahrner W (2005) Nanotechnology and nanoelectronics materials, devices, measurement techniques. Springer, New York

    Book  Google Scholar 

  • Fawell J, Nieuwenhuijsen MJ (2003) Contaminants in drinking water. Br Med Bull 68:199–208

    Article  CAS  Google Scholar 

  • Forgacs E, Cserháti T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971

    Article  CAS  Google Scholar 

  • Gautam P, Madathil D, Brijesh Nair AN (2013) Nanotechnology in waste water treatment: a review. Int J ChemTech Res 5:2303–2308

    Google Scholar 

  • Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1–17

    Article  CAS  Google Scholar 

  • Gollavelli G, Chang CC, Ling YC (2013) Facile synthesis of smart magnetic graphene for safe drinking water: heavy metal removal and disinfection control. ACS Sustain Chem Eng 1:462–472

    Article  CAS  Google Scholar 

  • Gupta K, Ghosh UC (2009) Arsenic removal using hydrous nanostructure Iron(III)-Titanium(IV) binary mixed oxide from aqueous solution. J Hazard Mater 161:884–892

    Article  CAS  Google Scholar 

  • Gupta VK, Nayak A (2012) Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem Eng J 180:81–90

    Article  CAS  Google Scholar 

  • Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene—an overview. Environ Sci Pollut Res 20(5):2828–2843

    Article  CAS  Google Scholar 

  • Helmer HR (1997) Water pollution control—a guide to the use of water quality management principles. E & FN Spon, London

    Google Scholar 

  • Hsieh S, Horng J (2007) Adsorption behavior of heavy metal ions by carbon nanotubes grown on microsized Al2O3 particles. J Univ Sci Technol Beijing, Miner, Metall, Mater 14:77–78

    CAS  Google Scholar 

  • Huang ZH, Zheng X, Lv W, Wang M, Yang QH, Kang F (2011) Adsorption of lead (II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets. Langmuir 27:7558–7562

    Article  CAS  Google Scholar 

  • Ihsanullah Abbas A, Al-Amer AM, Laoui T, AlMarri MJ, Nasser MS, Khraisheh M, Atieh MA (2016) Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep Purif Technol 157:141–161

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    Article  CAS  Google Scholar 

  • Iijima S (2002) Carbon nanotubes: past, present, and future. Physica B Condens. Matter 323:1–5

    Article  CAS  Google Scholar 

  • Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K (1999) Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett 309:165

    Article  CAS  Google Scholar 

  • Issa M, Meunier J (2007) Removal of nickel ions from water by multi-walled carbon nanotubes. J Hazard Mater 46:283–288

    Google Scholar 

  • John DZ (1990) Handbook of drinking water quality: standards and controls. Van Nostrand Reinhold, New York

    Google Scholar 

  • Kalhapure RS, Sonawane SJ, Sikwal DR, Jadhav M, Rambharose S, Mocktar C, Govender T (2015) Solid lipid nanoparticles of clotrimazole silver complex: an efficient nanoantibacterial against Staphylococcus aureus and MRSA. Colloids Surf B Biointerfaces 36:651–658

    Article  CAS  Google Scholar 

  • Kochkar H, Turki A, Bergaoui L, Berhault G, Ghorbel AJ (2009) Study of Pd(II) adsorption over titanate nanotubes of different diameters. Colloid Interface Sci 331:27–31

    Article  CAS  Google Scholar 

  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  • Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134

    Article  CAS  Google Scholar 

  • Lee YC, Yang JW (2012) Self-assembled flower-like TiO2 on exfoliated graphite oxide for heavy metal removal. J Ind Eng Chem 18:1178–1185

    Article  CAS  Google Scholar 

  • Leonard P, Hearty S, Brennan J (2003) Advances in biosensors for detection of pathogens in food and water. Enzyme Microbial Technol 32:3–13

    Article  CAS  Google Scholar 

  • Li YH, Wang S, Wei J, Zhang X, Xu C, Luan Z, Wu D, Wei B (2002) Lead adsorption on carbon nanotubes. Chem Phys Lett 357:263–266

    Article  CAS  Google Scholar 

  • Li Y, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wu D, Wei B (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41(14):2787–2792

    Article  CAS  Google Scholar 

  • Li J, Zhang S, Chen C, Zhao G, Yang X, Li J, Wang X (2012) Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles. ACS Appl Mater Interfaces 4:4991–5000

    Article  CAS  Google Scholar 

  • Li M, Lv Z, Zheng J, Hu J, Jiang C, Ueda M, Zhang X, Wang L (2017) Positively charged nanofiltration membrane with dendritic surface for toxic element removal. ACS Sustain Chem Eng 5:784–792

    Article  CAS  Google Scholar 

  • Liu Z, Yu R, Dong Y, Li W, Zhou W (2016) Preparation of α-Fe2O3 hollow spheres, nanotubes. RSC Adv 6:82854–82861

    Article  CAS  Google Scholar 

  • Madadrang CJ, Kim HY, Gao G, Wang N, Zhu J, Feng H, Gorring M, Kasner ML, Hou S (2012) Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl Mater Interfaces 4:1186–1193

    Article  CAS  Google Scholar 

  • Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forró L (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6:1121–1125

    Article  CAS  Google Scholar 

  • Maleki Dizaj S, Mennati A, Jafari S, Khezri K, Adibkia K (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5:19–23

    Google Scholar 

  • Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859

    Article  CAS  Google Scholar 

  • Mishra AK (2014) Application of nanotechnology in water research. Scrivener publishing. ISBN: 978-1-118-49630-51-552

    Google Scholar 

  • Monser L, Adhoum N (2002) Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater. Sep Purif Technol 26:137–146

    Article  CAS  Google Scholar 

  • Mostafavi ST, Mehrnia MR, Rashidi AM (2009) Preparation of nanofilter from carbon nanotubes for application in virus removal from water. Desalination 238:271–280

    Article  CAS  Google Scholar 

  • Mubarak NM, Sahu JN, Abdullah EC, Jayakumar NS (2014) Removal of heavy metals from wastewater using carbon nanotubes. Sep Purif Rev 43:311–338

    Article  CAS  Google Scholar 

  • Mueller NC, Nowack B (2010) Nanoparticles for remediation: solving big problems with little particles. Elements 6:395–400

    Article  CAS  Google Scholar 

  • Nangmenyi G, Xao W, Mehrabi S, Mintz E, Economy J (2009) Bactericidal activity of Ag nanoparticle-impregnated fibreglass for water disinfection. J Water Health 7:657

    Article  CAS  Google Scholar 

  • Nemerow N, Dasgupta A (1991) Industrial and hazardous waste treatment. Van Nostrand Reinhold, New York

    Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  • Obare SO, Meyer GJ (2004) Nanostructured materials for environmental remediation of organic contaminants in water. J Environ Sci Health—Part A 39:2549–2582

    Article  Google Scholar 

  • Ouyang K, Dai K, Walker SL, Huang Q, Yin X, Cai P (2016) Efficient photocatalytic disinfection of Escherichia coli O157:H7 using C70-TiO2 hybrid under visible light irradiation. Sci Rep 6:25702

    Article  CAS  Google Scholar 

  • Palkar VR (1999) Sol-gel derived nanostructured γ-alumina porous spheres as an adsorbent in liquid chromatography. Nanostruct Mater 11:369–374

    Article  CAS  Google Scholar 

  • Peng X, Luan Z, Ding J, Di Z, Li Y, Tian B (2005) Ceria nanoparticles supported nanotubes for the removal of arsenate from water. Mater Lett 59:399–403

    Article  CAS  Google Scholar 

  • Peydayesh M, Bagheri M, Mohammadi T, Bakhtiari O (2017) Fabrication optimization of polyethersulfone (PES)/polyvinylpyrrolidone (PVP) nanofiltration membranes using Box-Behnken response surface method. RSC Adv 7:24995–25008

    Article  CAS  Google Scholar 

  • Pradeep T (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517:6441–6478

    Article  CAS  Google Scholar 

  • Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    Article  CAS  Google Scholar 

  • Rao MM, Ramesh A, Rao GPC, Seshaiah K (2006) Removal of copper and cadmium from the aqueous solutions by activated carbon derived from ceiba pentandra hulls. J Hazard Mater B 129:123–129

    Article  CAS  Google Scholar 

  • Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 34:224–231

    Article  CAS  Google Scholar 

  • Ravindranath R, Roy P, Periasamy AP, Chen PW, Liang CT, Chang HT (2017) Fe2O3/Al2O3 microboxes for efficient removal of heavy metal ions. New J Chem 41:7751–7757

    Article  CAS  Google Scholar 

  • Ray PC, Yu H, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:1–35

    Article  CAS  Google Scholar 

  • Ren X, Chen C, Nagatsu M, Wang X (2011) Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J 170:395–410

    Article  CAS  Google Scholar 

  • Rickerby DG, Morrison M (2007) Nanotechnology and the environment a European perspective. Sci Technol Adv Mater 8:19–24

    Article  CAS  Google Scholar 

  • Ritter L, Solomon K, Sibley et al (2002) Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the walkerton inquiry. J Toxicol Environ Health—Part A 65:1–142

    Google Scholar 

  • Rockstrom J (2003) Water for food and nature in drought-prone tropics. vapour shif in rain-fed agriculture. Philos Trans R Soc B: Biol Sci 358:1997–2009

    Article  Google Scholar 

  • Sadegh H, Ali GAM, Gupta VK, Makhlouf ASH, Shahryari-ghoshekandi R, Nadagouda MN, Sillanpää M, Megiel E (2017) The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J Nanostructure Chem 7:1–14

    Article  CAS  Google Scholar 

  • Salam Abdel M, Makki MS, Abdelaal M (2011) Preparation and characterization of multi-walled carbon nanotubes/chitosan nanocomposite and its application for the removal of heavy metals from aqueous solution. J Alloys Compd 509:2582–2587

    Article  CAS  Google Scholar 

  • Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306:1116–1137

    Article  CAS  Google Scholar 

  • Santhosh C, Malathi A, Dhaneshvar E, Bhatnagar A, Grace AN, Madhavan J (2019) Nanoscale materials in water purification, micro and nano technologies. https://doi.org/10.1016/b978-0-12-813926-4.00022-7

    Chapter  Google Scholar 

  • Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7:331

    Article  CAS  Google Scholar 

  • Scida K, Stege PW, Haby G, Messina GA, Garcia CD (2011) Recent applications of carbonbased nanomaterials in analytical chemistry. Anal Chim Acta 691:6–17

    Article  CAS  Google Scholar 

  • Sharma Y, Srivastava V, Singh V, Kaul S, Weng C (2009) Nano-adsorbents for the removal of metallic pollutants from water and wastewater. Environ Technol 30:583–609

    Article  CAS  Google Scholar 

  • Sitko R, Zawisza B, Malicka E (2013) Graphene as a new sorbent in analytical chemistry. TrAC. Trends Anal Chem 51:33–43

    Article  CAS  Google Scholar 

  • Stafiej A, Pyrzynska K (2007) Adsorption of heavy metal ions with carbon nanotubes. Sep Purif Technol 58:49–52

    Article  CAS  Google Scholar 

  • Stefaniuk M, Oleszczuk P, Ok PS (2016) Review on nano zerovalent iron (nZVI). from synthesis to environmental applications. Chem Eng J 287:618–632

    Article  CAS  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Exp Suppl 101:133–164

    Google Scholar 

  • Upadhyayula VKK, Deng S, Mitchell MC, Smith GB (2009) Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci Total Environ 408:1–13

    Article  CAS  Google Scholar 

  • Van Benschoten JE, Reed BE, Matsumoto MR, McGarvey PJ (1994) Metal removal by soil washing for an iron oxide coated sandy soil. Water Environ Res 66:168–174

    Article  Google Scholar 

  • Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources. Vulnerability from climate change and population growth. Science 289:284–288

    Article  Google Scholar 

  • Vukovic G, Marinkovic A, Skapin S, Ristic M, Aleksic R, Peric-Gruji A, Uskokovic P (2011) Removal of lead from water by amino modified multi-walled carbon nanotubes. Chem Eng J 173:855–865

    Article  CAS  Google Scholar 

  • Wan X, Huang Y, Chen Y (2012) Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale. Acc Chem Res 45:598–607

    Article  CAS  Google Scholar 

  • WHO (2017) Progress on drinking water. Sanitation and hygiene. Available from: https://washdata.org/sites/default/files/documents/reports/2018-01/JMP-2017-report-final.pdf

  • Wildgoose G, Banks C, Leventis H, Compton R (2006) Chemically modified carbon nanotubes for use in electroanalysis. Microchim Acta 152:187–214

    Article  CAS  Google Scholar 

  • Yang K, Xing B (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chem Rev https://doi.org/10.1021/cr100059s

    Article  CAS  Google Scholar 

  • Zhao X, Jia Q, Song N, Zhou W, Li Y (2010) Adsorption of Pb(II) from an aqueous solution by titanium dioxide/carbon nanotube nanocomposites: kinetics, thermodynamics, and isotherms. J Chem Eng Data 55(10):4428–4433

    Article  CAS  Google Scholar 

  • Zhao G, Ren X, Gao X, Tan X, Li J, Chen C, Huang Y, Wang X (2011) Removal of Pb (II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans 40:10945–10952

    Article  CAS  Google Scholar 

  • Zhao J, Wang Z, White JC, Xing B (2014) Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation. Environ Sci Technol 48:9995–10009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meena Bisht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bisht, M. (2019). Nanomaterials for Removal of Toxic Metals Ions from the Water. In: Bhat, A., Khan, I., Jawaid, M., Suliman, F., Al-Lawati, H., Al-Kindy, S. (eds) Nanomaterials for Healthcare, Energy and Environment. Advanced Structured Materials, vol 118. Springer, Singapore. https://doi.org/10.1007/978-981-13-9833-9_8

Download citation

Publish with us

Policies and ethics