Skip to main content

Advanced in Mach-Zehnder Interferometer Using Windowed Fourier Transform to Analyse Coupled Heat and Mass Transfer

  • Chapter
  • First Online:
Advances in Visualization and Optimization Techniques for Multidisciplinary Research

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Series of thermodiffusion experiments using optical digital interferometry (ODI) have been conducted onboard the International Space Station. Conventionally, the two-dimensional (2D) fast Fourier transform (FFT) fringe analysis technique has been applied as a fast and reliable technique to extract data. In this study, for the first time, the windowed Fourier transform (WFT) method is used to analyse the same experiments. In this method, a Fourier transformation is applied on the fringes at two different stages: initially, during the filtration of the non-zero peaks and then on the wrapped phase image. We provide a detailed comparison between FFT and WFT results of binary and ternary mixtures for ODI thermodiffusion experiments. The substantial enhancements of this method are presented and discussed for different experiments conducted for both binary and ternary mixtures. We show that while disturbances in the phase fringe pattern can cause significant error in FFT techniques, if the windowed Fourier filtration (WFF) parameters are properly chosen this type of noise can be eliminated during WFF analysis. The importance of replacing the FFT method becomes more pronounced for the ternary system, as this method fails to reconcile reliable concentration profiles. The results of this chapter can show that the application of the windowed Fourier transform in optical digital interferometry investigations show improved results over the same experiments analysed using FFT methods, especially for experiments involving very small heat and mass fluxes such as the Soret effect in multicomponent mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Change in refractive index:

\( \Delta n \)

Coordinate index of pixel:

i, j

Coordinate system:

x, y

Fourier transform of coordinate:

\( u, v, \xi, \eta \)

Initial concentration:

cO

Molecular diffusion coefficient:

D (m2 s−1)

Maximum concentration difference:

\( \Delta C \)

Non zero picks, Fourier transform:

C, C*

Number of pixels in x, y direction:

m, n

Optical length of the cell:

L (mm)

Phase distribution:

\( \Delta \phi \)

Soret coefficient:

ST (K−1)

Temperature difference:

\( \Delta {\text{T}}\,({\text{K}}) \)

Time:

\( t\,(\text{s}) \)

Thermodiffusion coefficient:

DT (m2 s−1 K−1)

Vibration amplitude:

A (mm)

WFT spectrum:

\( Sf \)

Concentration contrast factor:

\( \left( {\partial n\partial c} \right)_{p.T} \left( - \right) \)

Density:

\( \rho \,\left( {{\text{kg/m}}^{3} } \right) \)

Interference phase:

\( \upphi \)

Laser wavelength:

\( \uplambda\,({\text{nm}}) \)

Mixture viscosity:

\( \uplambda\,({\text{nm}}) \)

Relaxation time:

\( \uptau\,({\text{s}}) \)

Temperature contrast factor:

\( \left( {\partial n\partial T} \right)_{p.c} \,\left( {{1/\text{K}}} \right) \)

Thermal diffusivity:

\( \upchi\,({\text{m}}^{2} /{\text{s}}) \)

Standard deviations:

\( \delta_{x},\,\delta_{y} \)

Experimental:

exp

Hour:

hr

Minute:

min

Reference:

ref

Thermal:

th

Threshold:

thr

Steady:

st

References

  1. Heise B (2010) Image processing for phase-sensitive optical coherence tomography, 3838120582, Paperback

    Google Scholar 

  2. Bahri M, Hitzer ESM, Ashino R, Vaillancourt R (2010) Windowed Fourier transform of two-dimensional quaternionic signals. Appl Math Comput 216:2366

    MathSciNet  MATH  Google Scholar 

  3. Judge TR (1996) Automatic analysis of interferometric data—FRAN (description and user guide)

    Google Scholar 

  4. Judge TR, Bryanston-Cross PJ (1994) A review of phase unwrapping techniques in fringe analysis. Opt Lasers Eng 21:199–239

    Article  Google Scholar 

  5. Bryanston-Cross PJ, Quan C, Judge TR (1994) Application of the FFT method for the quantitative extraction of information from high-resolution interferometric and photoelastic data. Opt Laser Technol 26:147

    Article  Google Scholar 

  6. Pike C (2008) Two-dimensional Fourier processing of rasterised audio. Abstract A comprehensive software tool has been de

    Google Scholar 

  7. Vander R, Lipson SG, Leizerson I (2003) Fourier fringe analysis with improved spatial resolution. Appl Opt 42:6830–6837

    Article  Google Scholar 

  8. Robinson EA (1982) A historical perspective of spectrum estimation. Proc IEEE 70:885–907

    Article  Google Scholar 

  9. Cormier E, Corner L, Kosik EM, Walmsley IA, Wyatt AS (2005) Spectral phase interferometry for complete reconstruction of Attosecond pulses, Attosecond Science and technology. Laser Phys 15:909–915

    Google Scholar 

  10. Onodera R, Watanabe H, Ishii Y (2005) Interferometric phase-measurement using a one-dimensional discrete hilbert transform. Opt Rev 12:29–36

    Article  Google Scholar 

  11. Lepetit L, Chériaux G, Joffre M (1995) Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. J Opt Soc Am B 12:2467–2474

    Article  Google Scholar 

  12. Macy WW Jr (1983) Two-dimensional fringe-pattern analysis. Appl Opt 22:3898–3901

    Article  Google Scholar 

  13. Kreis T (1986) Digital holographic interference-phase measurement using the Fourier-transform method. J Opt Soc Am A 3:847–855

    Article  Google Scholar 

  14. Shevtsova V, Lyubimova T, Saghir Z, Melnikov D, Gaponenko Y, Sechenyh V, et al (2011) IVIDIL: on-board g-jitters and diffusion controlled phenomena. In: International symposium on physical sciences in space, vol 327, p 12031

    Google Scholar 

  15. Kianian A, Ahadi A, Saghir MZ (2012) Experimental evidence of low Rayleigh vibration on mixture during thermodiffusion experiment. Can J Chem Eng 91(9):1568–1574

    Article  Google Scholar 

  16. Ahadi A, Van Varenbergh S, Saghir MZ (in press) Measurement of Soret coefficients for a ternary hydrocarbon mixture in low gravity environment. J Chem Phys

    Google Scholar 

  17. Ahadi A, Kianian A, Saghir MZ (2013) Heat and mass transport phenomena under influence of vibration using a new aided image processing approach. Int J Therm Sci, 1–12

    Google Scholar 

  18. Ahadi A, Saghir MZ (2013) Transient effect of micro vibration from two space vehicles on mixture during thermodiffusion experiment. Micro Sci Technol 9999:12

    Google Scholar 

  19. Costeseque P, Mojtabi A, Platten JK (2011) Thermodiffusion phenomena. CR Mec 339:275–279

    Article  Google Scholar 

  20. Ahadi A, Saghir MZ (2012) Quasi steady state effect of micro vibration from two space vehicles on mixture during thermodiffusion experiment. FDMP Fluid Dyn Mater Process, 287

    Google Scholar 

  21. Blanco P, Bou-Ali MM, Platten JK, Urteaga P, Madariaga JA, Santamaria C (2008) Determination of thermal diffusion coefficient in equimolar n-alkane mixtures: empirical correlations. J Chem Phys 129:174504

    Article  Google Scholar 

  22. Ahadi A, Yousefi T, Saghir MZ (2013) Double diffusive convection and thermodiffusion of fullerene–toluene nanofluid in a porous cavity. Can J Chem Eng 91(12):1918–1927

    Article  Google Scholar 

  23. Koniger A, Wunderlich H, Koehler W (2010) Measurement of diffusion and thermal diffusion in ternary fluid mixtures using a two-color optical beam deflection technique. J Chem Phys 132:174506

    Article  Google Scholar 

  24. Koehler W, Koniger A, Meier B (2009) Measurement of the Soret, diffusion, and thermal diffusion coefficients of three binary organic benchmark mixtures and of ethanol water mixtures using a beam deflection technique. Phil Mag 89:907

    Article  Google Scholar 

  25. Zhong X (2006) Methods for removal of spurious reflection effect on phase-shifting interferometry. J Opt A: Pure Appl Opt 8:617

    Article  Google Scholar 

  26. Khoshnevis A, Ahadi A, Saghir MZ (2012) Influence of static and oscillatory gravity fields on thermodiffusion of a binary mixture. Int J Therm Sci, 1–12

    Google Scholar 

  27. Ahadi A, Saghir MZ (2013) Experimental study of the impacts of forced vibration on thermodiffusion phenomenon in microgravity environment. Appl Therm Eng 60(1):348–358

    Article  Google Scholar 

  28. Mazzoni S (2011) DSC as part of the DCMIX project experiment scientific requirements

    Google Scholar 

  29. Cuche E, Marquet P, Depeursinge C (2000) Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl Opt 39:4070–4075

    Article  Google Scholar 

  30. Zhong J, Weng J (2004) Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry. Appl Opt 43:4993–4998

    Article  Google Scholar 

  31. Zhang Z, Jing Z, Wang Z, Kuang D (2012) Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase calculation at discontinuities in fringe projection profilometry. Opt Lasers Eng 50:1152

    Article  Google Scholar 

  32. González RC, Woods RE (2008) Digital image processing. Prentice Hall, Pearson

    Google Scholar 

  33. Abdul-Rahman H (2007) Three dimensional Fourier fringe analysis and phase unwrapping, Liverpool John Moores University for the degree of Doctor of Philosophy

    Google Scholar 

  34. Goldberg KA, Bokor J (2001) Fourier-transform method of phase-shift determination. Appl Opt 40:2886–2894

    Article  Google Scholar 

  35. Deck LL (2003) Fourier-transform phase-shifting interferometry. Appl Opt 42:2354–2365

    Article  Google Scholar 

  36. Creath K (1998) In: Wolf E (ed),V phase-measurement interferometry techniques. Elsevier, p 349

    Google Scholar 

  37. Ghiglia DC, Pritt MD (1998) Two-dimensional phase unwrapping: theory, algorithms, and software. Wiley

    Google Scholar 

  38. Hipp M, Woisetschlager J, Reiterer P, Neger T (2004) Digital evaluation of interferograms. Measurement 36:53–66

    Article  Google Scholar 

  39. Qian K, Seah HS, Asundi A (2005) Fault detection by interferometric fringe pattern analysis using windowed Fourier transform. Meas Sci Technol 16:1582

    Article  Google Scholar 

  40. Kemao Q (2007) Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations. Opt Lasers Eng 45:304

    Article  Google Scholar 

  41. Kemao Q, Soon SH, Asundi A (2003) Smoothing filters in phase-shifting interferometry. Opt Laser Technol 35:649

    Article  Google Scholar 

  42. Chen W (2008) Retrieval of instantaneous frequency from digital holograms based on adaptive windows. Opt Eng 47:065801

    Article  Google Scholar 

  43. Servin M, Marroquin JL, Cuevas FJ (1997) Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique. Appl Opt 36:4540–4548

    Article  Google Scholar 

  44. Villa J, Servin M (1999) Robust profilometer for the measurement of 3-D object shapes based on a regularized phase tracker. Opt Lasers Eng 31:279

    Article  Google Scholar 

  45. Cai LZ, Liu Q, Yang XL (2003) Phase-shift extraction and wave-front reconstruction in phase-shifting interferometry with arbitrary phase steps. Opt Lett 28:1808–1810

    Article  Google Scholar 

  46. Fang J, Xiong CY, Yang ZL (2001) Digital transform processing of carrier fringe patterns from speckle-shearing interferometry. J Mod Opt 48:507–520

    Article  Google Scholar 

  47. Federico A, Kaufmann GH (2003) Phase retrieval in digital speckle pattern interferometry by use of a smoothed space-frequency distribution. Appl Opt 42:7066–7071

    Article  Google Scholar 

  48. Kemao Q (2008) A simple phase unwrapping approach based on filtering by windowed Fourier transform: a note on the threshold selection. Opt Laser Technol 40:1091

    Article  Google Scholar 

  49. Shevtsova V, Melnikov D, Legros JC, Yan Y, Saghir Z, Lyubimova T et al (2007) Influence of vibrations on thermodiffusion in binary mixture: a benchmark of numerical solutions. Phys Fluids 19:17111

    Article  Google Scholar 

  50. Quan C, Niu H, Tay CJ (2010) An improved windowed Fourier transform for fringe demodulation. Opt Laser Technol 42:126–131

    Article  Google Scholar 

  51. Kemao Q, Soon SH, Asundi A (2003) Instantaneous frequency and its application to strain extraction in Moire interferometry. Appl Opt 42:6504–6513

    Article  Google Scholar 

  52. Kemao Q, Wang H, Gao W (2008) Windowed Fourier transform for fringe pattern analysis: theoretical analyses. Appl Opt 47:5408–5419

    Article  Google Scholar 

  53. Takeda M, Ina H, Kobayashi S (1982) Fourier transform methods of fringe-pattern analysis for computer-based topography and interferometry. J Opt Soc Am 72:156–160

    Article  Google Scholar 

  54. Galand Q (2012) Experimental investigation of the diffusive properties of ternary liquid systems. Ph.D. thesis, University De Bruxelles, ECOLE Polytechnique De Bruxelles, vol 1

    Google Scholar 

  55. Kemao Q (2004) Windowed Fourier transform for fringe pattern analysis. Appl Opt 43:2695

    Article  Google Scholar 

  56. Mialdun A, Yasnou V, Shevtsova V, Königer A, Köhler W, Alonso de Mezquia D et al (2012) A comprehensive study of diffusion, thermodiffusion, and Soret coefficients of water-isopropanol mixtures. J Chem Phys 136:244512

    Article  Google Scholar 

  57. Servin M, Marroquin JL, Cuevas FJ (2001) Fringe-follower regularized phase tracker for demodulation of closed-fringe interferograms. J Opt Soc Am A 18:689–695

    Article  Google Scholar 

  58. Servin M, Rodriguez-Vera R, Marroquin JL, Malacara D (1998) Phase-shifting interferometry using a two-dimensional regularized phase-tracking technique. J Mod Opt 45:1809–1819

    Article  Google Scholar 

  59. Shevtsova V (2010) IVIDIL experiment onboard the ISS. Adv Space Res 46:672–679

    Article  Google Scholar 

  60. Mialdun A, Shevtsova VM (2008) Development of optical digital interferometry technique for measurement of thermodiffusion coefficients. Int J Heat Mass Transf 51:3164

    Article  Google Scholar 

  61. Kemao Q (2007) A simple phase unwrapping approach based on filtering by windowed Fourier transform: the phase near edges. Opt Laser Technol 39:1364

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the financial support of the Canadian Space Agency (CSA) and the Natural Sciences and Engineering Research Council of Canada (NSERC) in funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Ahadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahadi, A., Saghir, M.Z. (2020). Advanced in Mach-Zehnder Interferometer Using Windowed Fourier Transform to Analyse Coupled Heat and Mass Transfer. In: Vucinic, D., Rodrigues Leta, F., Janardhanan, S. (eds) Advances in Visualization and Optimization Techniques for Multidisciplinary Research. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-9806-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9806-3_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9805-6

  • Online ISBN: 978-981-13-9806-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics