Skip to main content
  • 664 Accesses

Abstract

In this chapter, we will discuss O(N) methods for first-principles calculations based on density functional theory (DFT) which provides a first-principles framework enabling us to efficiently calculate electronic structures of materials with quantitative accuracy, where N is the number of atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the second and third terms in the parenthesis are calculated using the output charge density \(n_\mathrm{out}\), while the fourth term is calculated using the input charge density \(n_\mathrm{in}\).

  2. 2.

    Even if the overlap between the associated localized orbitals is zero, the two-electron exchange integral is not zero. Thus, strictly speaking all the elements are nonzero for hybrid functionals. Even in the case of hybrid functionals with a screened Coulomb interaction, the number of nonzero elements largely increases compared to semi-local functionals, while the resultant matrix will be sparse due to the limited interaction.

  3. 3.

    The formulation does not rely on the band gap of a systems.

References

  1. E. Wigner, F. Seitz, Phys. Rev. 43, 804 (1933)

    Google Scholar 

  2. J.C. Slater, Phys. Rev. 81, 385 (1951)

    Google Scholar 

  3. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Google Scholar 

  4. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Google Scholar 

  5. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

    Google Scholar 

  6. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Google Scholar 

  7. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Google Scholar 

  8. C.E. Dykstra, G. Frenking, K.S. Kim, G.E. Scuseria (ed.), Theory and Applications of Computational Chemistry: The First 40 Years (Elsevier, Amsterdam, 2005)

    Google Scholar 

  9. S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999)

    Google Scholar 

  10. D.R. Bowler, T. Miyazaki, Rep. Prog. Phys. 75, 036503 (2012)

    Google Scholar 

  11. T. Ozaki, Phys. Rev. B 67, 155108 (2003)

    Google Scholar 

  12. T. Ozaki, H. Kino, Phys. Rev. B 72, 045121 (2005)

    Google Scholar 

  13. K. Lejaeghere et al., Science 351, aad3000 (2016)

    Google Scholar 

  14. F. Mauri, G. Galli, R. Car, Phys. Rev. B 47, 9973 (1993)

    Google Scholar 

  15. P. Ordejón, D.A. Drabold, M.P. Grumbach, R.M. Martin, Phys. Rev. B 48, 14646 (1993)

    Google Scholar 

  16. X.P. Li, R.W. Nunes, D. Vanderbilt, Phys. Rev. B 47, 10891 (1993)

    Google Scholar 

  17. M.S. Daw, Phys. Rev. B 47, 10895 (1993)

    Google Scholar 

  18. E. Tsuchida, M. Tsukada, Phys. Rev. B 54, 7602 (1996)

    Google Scholar 

  19. M.J. Gillan, D.R. Bowler, A.S. Torralba, T. Miyazaki, Comput. Phys. Commun. 177, 14 (2007)

    Google Scholar 

  20. C.-K. Skylaris et al., J. Chem. Phys. 122, 084119 (2005)

    Google Scholar 

  21. T. Ozaki, Phys. Rev. B 74, 245101 (2006)

    Google Scholar 

  22. R. Haydock, V. Heine, M.J. Kelly, J. Phys. C 5, 2845 (1972); 8, 2591 (1975)

    Google Scholar 

  23. M. Aoki, Phys. Rev. Lett. 71, 3842 (1993)

    Google Scholar 

  24. T. Ozaki, M. Aoki, D.G. Pettifor, Phys. Rev. B 61, 7972 (2000)

    Google Scholar 

  25. W.T. Yang, Phys. Rev. Lett. 66, 1438 (1991)

    Google Scholar 

  26. D.G. Pettifor, Bonding and Structure of Molecules and Solids, 1st edn. (Clarendon Press, 1995)

    Google Scholar 

  27. T. Ozaki, Phys. Rev. B 64, 195126 (2001)

    Google Scholar 

  28. T.V.T. Duy, T. Ozaki, Comput. Phys. Commun. 185, 777 (2014)

    Google Scholar 

  29. H. Sawada, S. Taniguchi, K. Kawakami, T. Ozaki, Model. Simul. Mater. Sci. Eng. 21, 045012 (2013)

    Google Scholar 

  30. L. Lin, J. Lu, L. Ying, R. Car, E. Weinan, Commun. Math. Sci. 7, 755 (2009)

    Google Scholar 

  31. T. Ozaki, Phys. Rev. B 82, 075131 (2010)

    Google Scholar 

  32. T. Ozaki, Phys. Rev. B 75, 035123 (2007)

    Google Scholar 

  33. M. Toyoda, T. Ozaki, Phys. Rev. A 83, 032515 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taisuke Ozaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ozaki, T. (2019). O(N) Methods. In: Geshi, M. (eds) The Art of High Performance Computing for Computational Science, Vol. 2. Springer, Singapore. https://doi.org/10.1007/978-981-13-9802-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9802-5_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9801-8

  • Online ISBN: 978-981-13-9802-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics