Skip to main content

Nanostructured, Self-Assembled Spider Silk Materials for Biomedical Applications

  • Chapter
  • First Online:
Biological and Bio-inspired Nanomaterials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1174))

Abstract

The extraordinary mechanical properties of spider silk fibers result from the interplay of composition, structure and self-assembly of spider silk proteins (spidroins). Genetic approaches enabled the biotechnological production of recombinant spidroins which have been employed to unravel the self-assembly and spinning process. Various processing conditions allowed to explore non-natural morphologies including nanofibrils, particles, capsules, hydrogels, films or foams. Recombinant spider silk proteins and materials made thereof can be utilized for biomedical applications, such as drug delivery, tissue engineering or 3D-biomanufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doblhofer E, Heidebrecht A, Scheibel T (2015) To spin or not to spin: spider silk fibers and more. Appl Microbiol Biotechnol 99(22):9361–9380

    Article  CAS  PubMed  Google Scholar 

  2. Meyers MA, McKittrick J, Chen P-Y (2013) Structural biological materials: critical mechanics-materials connections. Science 339(6121):773–779

    Article  CAS  PubMed  Google Scholar 

  3. Humenik M, Smith AM, Scheibel T (2011) Recombinant spider silks—biopolymers with potential for future applications. Polymers 3(1):640–661

    Article  CAS  Google Scholar 

  4. Neuenfeldt M, Scheibel T (2014) Silks from insects: from natural diversity to applications. In: Hoffmann KH (ed) Insect molecular biology and ecology. CRC Press, Boca Raton, pp 376–400

    Google Scholar 

  5. Sutherland TD, Young JH, Weisman S, Hayashi CY, Merritt DJ (2010) Insect silk: one name, many materials. Annu Rev Entomol 55(1):171–188

    Article  CAS  PubMed  Google Scholar 

  6. Humenik M, Scheibel T, Smith A (2011) Spider silk: understanding the structure–function relationship of a natural fiber. In: Howorka S (ed) Progress in molecular biology and translational science, vol 103. Cambridge, MA, pp 131–185

    Google Scholar 

  7. Qin Z, Buehler MJ (2013) Spider silk: webs measure up. Nat Mater 12(3):185–187

    Article  CAS  PubMed  Google Scholar 

  8. dos Santos-Pinto JRA, Garcia AMC, Arcuri HA, Esteves FG, Salles HC, Lubec G, Palma MS (2016) Silkomics: insight into the silk spinning process of spiders. J Proteome Res 15(4):1179–1193

    Article  PubMed  CAS  Google Scholar 

  9. Vollrath F (2000) Strength and structure of spiders’ silks. Rev Mol Biotechnol 74(2):67–83

    Article  CAS  Google Scholar 

  10. Lefevre T, Boudreault S, Cloutier C, Pezolet M (2011) Diversity of molecular transformations involved in the formation of spider silks. J Mol Biol 405(1):238–253

    Article  CAS  PubMed  Google Scholar 

  11. Gatesy J, Hayashi C, Motriuk D, Woods J, Lewis R (2001) Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 291(5513):2603–2605

    Article  CAS  PubMed  Google Scholar 

  12. Casem ML, Collin MA, Ayoub NA, Hayashi CY (2010) Silk gene transcripts in the developing tubuliform glands of the western black widow, latrodectus hesperus. J Arachnol 38(1):99–103

    Article  Google Scholar 

  13. Hu X, Vasanthavada K, Kohler K, McNary S, Moore AMF, Vierra CA (2006) Molecular mechanisms of spider silk. Cell Mol Life Sci 63(17):1986–1999

    Article  CAS  PubMed  Google Scholar 

  14. Eisoldt L, Thamm C, Scheibel T (2012) Review the role of terminal domains during storage and assembly of spider silk proteins. Biopolymers 97(6):355–361

    Article  CAS  PubMed  Google Scholar 

  15. Hayashi CY, Blackledge TA, Lewis RV (2004) Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family. Mol Biol Evol 21(10):1950–1959

    Article  CAS  PubMed  Google Scholar 

  16. Gosline JM, Guerette PA, Ortlepp CS, Savage KN (1999) The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 202(23):3295–3303

    CAS  PubMed  Google Scholar 

  17. Vollrath F, Porter D, Holland C (2011) There are many more lessons still to be learned from spider silks. Soft Matter 7:9595–9600

    Article  CAS  Google Scholar 

  18. Agnarsson I, Blackledge TA (2009) Can a spider web be too sticky? Tensile mechanics constrains the evolution of capture spiral stickiness in orb-weaving spiders. J Zool 278(2):134–140

    Article  Google Scholar 

  19. Chaw RC, Correa-Garhwal SM, Clarke TH, Ayoub NA, Hayashi CY (2015) Proteomic evidence for components of spider silk synthesis from black widow silk glands and fibers. J Proteome Res 14(10):4223–4231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Clarke TH, Garb JE, Hayashi CY, Haney RA, Lancaster AK, Corbett S, Ayoub NA (2014) Multi-tissue transcriptomics of the black widow spider reveals expansions, co-options, and functional processes of the silk gland gene toolkit. BMC Genomics 15(1):1–17

    Article  CAS  Google Scholar 

  21. Pham T, Chuang T, Lin A, Joo H, Tsai J, Crawford T, Zhao L, Williams C, Hsia Y, Vierra C (2014) Dragline silk: a fiber assembled with low-molecular-weight cysteine-rich proteins. Biomacromolecules 15(11):4073–4081

    Article  CAS  PubMed  Google Scholar 

  22. Vollrath F, Knight DP (2001) Liquid crystalline spinning of spider silk. Nature 410(6828):541–548

    Article  CAS  PubMed  Google Scholar 

  23. Riekel C, Müller M, Vollrath F (1999) In situ x-ray diffraction during forced silking of spider silk. Macromolecules 32(13):4464–4466

    Article  CAS  Google Scholar 

  24. Lefevre T, Boudreault S, Cloutier C, Pezolet M (2008) Conformational and orientational transformation of silk proteins in the major ampullate gland of nephila clavipes spiders. Biomacromolecules 9(9):2399–2407

    Article  CAS  PubMed  Google Scholar 

  25. Jenkins JE, Holland GP, Yarger JL (2012) High resolution magic angle spinning nmr investigation of silk protein structure within major ampullate glands of orb weaving spiders. Soft Matter 8(6):1947–1954

    Article  CAS  Google Scholar 

  26. Jenkins JE, Sampath S, Butler E, Kim J, Henning RW, Holland GP, Yarger JL (2013) Characterizing the secondary protein structure of black widow dragline silk using solid-state nmr and x-ray diffraction. Biomacromolecules 14(10):3472–3483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Andersson M, Holm L, Ridderstråle Y, Johansson J, Rising A (2013) Morphology and composition of the spider major ampullate gland and dragline silk. Biomacromolecules 14(8):2945–2952

    Article  CAS  PubMed  Google Scholar 

  28. Vollrath F, Knight DP (1999) Structure and function of the silk production pathway in the spider nephila edulis. Int J Biol Macromol 24(2–3):243–249

    Article  CAS  PubMed  Google Scholar 

  29. Xu M, Lewis RV (1990) Structure of a protein superfiber – spider dragline silk. Proc Natl Acad Sci U S A 87(18):7120–7124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ayoub NA, Garb JE, Tinghitella RM, Collin MA, Hayashi CY (2007) Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS One 2(6):e514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sponner A, Schlott B, Vollrath F, Unger E, Grosse F, Weisshart K (2005) Characterization of the protein components of nephila clavipes dragline silk. Biochemistry 44(12):4727–4736

    Article  CAS  PubMed  Google Scholar 

  32. Han L, Zhang L, Zhao T, Wang Y, Nakagaki M (2013) Analysis of a new type of major ampullate spider silk gene, masp1s. Int J Biol Macromol 56:156–161

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Sponner A, Porter D, Vollrath F (2008) Proline and processing of spider silks. Biomacromolecules 9(1):116–121

    Article  CAS  PubMed  Google Scholar 

  34. Marhabaie M, Leeper TC, Blackledge TA (2014) Protein composition correlates with the mechanical properties of spider (argiope trifasciata) dragline silk. Biomacromolecules 15(1):20–29

    Article  CAS  PubMed  Google Scholar 

  35. Andersen SO (1970) Amino acid composition of spider silks. Comp Biochem Physiol 35(3):705–711

    Article  CAS  Google Scholar 

  36. Rising A, Nimmervoll H, Grip S, Fernandez-Arias A, Storckenfeldt E, Knight DP, Vollrath F, Engstrom W (2005) Spider silk proteins-mechanical property and gene sequence. Zool Sci 22(3):273–281

    Article  CAS  Google Scholar 

  37. Hinman MB, Jones JA, Lewis RV (2000) Synthetic spider silk: a modular fiber. Trends Biotechnol 18(9):374–379

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Y, Zhao A-C, Sima Y-H, Lu C, Xiang Z-H, Nakagaki M (2013) The molecular structures of major ampullate silk proteins of the wasp spider, argiope bruennichi: a second blueprint for synthesizing de novo silk. Comp Biochem Physiol B Biochem Mol Biol 164(3):151–158

    Article  CAS  PubMed  Google Scholar 

  39. dos Santos-Pinto JRA, Arcuri HA, Priewalder H, Salles HC, Palma MS, Lubec G (2015) Structural model for the spider silk protein spidroin-1. J Proteome Res 14(9):3859–3870

    Article  PubMed  CAS  Google Scholar 

  40. dos Santos-Pinto JRA, Lamprecht G, Chen W-Q, Heo S, Hardy JG, Priewalder H, Scheibel TR, Palma MS, Lubec G (2014) Structure and post-translational modifications of the web silk protein spidroin-1 from nephila spiders. J Proteome 105:174–185

    Article  CAS  Google Scholar 

  41. Hijirida DH, Do KG, Michal C, Wong S, Zax D, Jelinski LW (1996) 13c nmr of nephila clavipes major ampullate silk gland. Biophys J 71(6):3442–3447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu D, Guo C, Holland GP (2015) Probing the impact of acidification on spider silk assembly kinetics. Biomacromolecules 16(7):2072–2079

    Article  CAS  PubMed  Google Scholar 

  43. Hronska M, van Beek JD, Williamson PTF, Vollrath F, Meier BH (2004) Nmr characterization of native liquid spider dragline silk from nephila edulis. Biomacromolecules 5(3):834–839

    Article  CAS  PubMed  Google Scholar 

  44. Askarieh G, Hedhammar M, Nordling K, Saenz A, Casals C, Rising A, Johansson J, Knight SD (2010) Self-assembly of spider silk proteins is controlled by a ph-sensitive relay. Nature 465(7295):236–239

    Article  CAS  PubMed  Google Scholar 

  45. Hagn F, Eisoldt L, Hardy JG, Vendrely C, Coles M, Scheibel T, Kessler H (2010) A highly conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465(7295):239–242

    Article  CAS  PubMed  Google Scholar 

  46. Sponner A, Unger E, Grosse F, Klaus W (2005) Differential polymerization of the two main protein components of dragline silk during fibre spinning. Nat Mater 4(10):772–775

    Article  CAS  PubMed  Google Scholar 

  47. Rising A, Johansson J (2015) Toward spinning artificial spider silk. Nat Chem Biol 11(5):309–315

    Article  CAS  PubMed  Google Scholar 

  48. Vollrath F, Knight DP, Hu XW (1998) Silk production in a spider involves acid bath treatment. Proc R Soc London Ser B 265(1398):817–820

    Article  Google Scholar 

  49. Knight DP, Vollrath F (2001) Changes in element composition along the spinning duct in a nephila spider. Naturwissenschaften 88(4):179–182

    Article  CAS  PubMed  Google Scholar 

  50. Gauthier M, Leclerc J, Lefèvre T, Gagné SM, Auger M (2014) Effect of ph on the structure of the recombinant c-terminal domain of nephila clavipes dragline silk protein. Biomacromolecules 15(12):4447–4454

    Article  CAS  PubMed  Google Scholar 

  51. Bauer J, Scheibel T (2017) Conformational stability and interplay of helical n- and c-terminal domains with implications on major ampullate spidroin assembly. Biomacromolecules 18(3):835–845

    Article  CAS  PubMed  Google Scholar 

  52. Kronqvist N, Otikovs M, Chmyrov V, Chen G, Andersson M, Nordling K, Landreh M, Sarr M, Jörnvall H, Wennmalm S, Widengren J, Meng Q, Rising A, Otzen D, Knight SD, Jaudzems K, Johansson J (2014) Sequential ph-driven dimerization and stabilization of the n-terminal domain enables rapid spider silk formation. Nat Commun 5:3254

    Article  PubMed  CAS  Google Scholar 

  53. Hagn F, Thamm C, Scheibel T, Kessler H (2011) Ph-dependent dimerization and salt-dependent stabilization of the n-terminal domain of spider dragline silk-implications for fiber formation. Angew Chem Int Ed 50(1):310–313

    Article  CAS  Google Scholar 

  54. Jaudzems K, Askarieh G, Landreh M, Nordling K, Hedhammar M, Jörnvall H, Rising A, Knight SD, Johansson J (2012) Ph dependent dimerization of spider silk n-terminal domain requires relocation of a wedged tryptophan side chain. J Mol Biol 422(4):477–487

    Article  CAS  PubMed  Google Scholar 

  55. Schwarze S, Zwettler FU, Johnson CM, Neuweiler H (2013) The n-terminal domains of spider silk proteins assemble ultrafast and protected from charge screening. Nat Commun 4:2815

    Article  PubMed  CAS  Google Scholar 

  56. Ries J, Schwarze S, Johnson CM, Neuweiler H (2014) Microsecond folding and domain motions of a spider silk protein structural switch. J Am Chem Soc 136(49):17136–17144

    Article  CAS  PubMed  Google Scholar 

  57. Kurut A, Dicko C, Lund M (2015) Dimerization of terminal domains in spiders silk proteins is controlled by electrostatic anisotropy and modulated by hydrophobic patches. ACS Biomater Sci Eng 1(6):363–371

    Article  CAS  PubMed  Google Scholar 

  58. Barroso da Silva FL, Pasquali S, Derreumaux P, Dias LG (2016) Electrostatics analysis of the mutational and ph effects of the n-terminal domain self-association of the major ampullate spidroin. Soft Matter 12(25):5600–5612

    Article  CAS  PubMed  Google Scholar 

  59. Bauer J, Scheibel T (2017) Dimerization of the conserved n-terminal domain of a spider silk protein controls the self-assembly of the repetitive core domain. Biomacromolecules 18(8):2521–2528

    Article  CAS  PubMed  Google Scholar 

  60. Bauer J, Schaal D, Eisoldt L, Schweimer K, Schwarzinger S, Scheibel T (2016) Acidic residues control the dimerization of the n-terminal domain of black widow spiders’ major ampullate spidroin 1. Sci Rep 6:34442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Holland GP, Creager MS, Jenkins JE, Lewis RV, Yarger JL (2008) Determining secondary structure in spider dragline silk by carbon-carbon correlation solid-state nmr spectroscopy. J Am Chem Soc 130(30):9871–9877

    Article  CAS  PubMed  Google Scholar 

  62. van Beek JD, Hess S, Vollrath F, Meier BH (2002) The molecular structure of spider dragline silk: folding and orientation of the protein backbone. Proc Natl Acad Sci U S A 99(16):10266–10271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Plaza GR, Perez-Rigueiro J, Riekel C, Perea GB, Agullo-Rueda F, Burghammer M, Guinea GV, Elices M (2012) Relationship between microstructure and mechanical properties in spider silk fibers: identification of two regimes in the microstructural changes. Soft Matter 8(22):6015–6026

    Article  CAS  Google Scholar 

  64. Simmons AH, Michal CA, Jelinski LW (1996) Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271(5245):84–87

    Article  CAS  PubMed  Google Scholar 

  65. Jenkins JE, Creager MS, Lewis RV, Holland GP, Yarger JL (2010) Quantitative correlation between the protein primary sequences and secondary structures in spider dragline silks. Biomacromolecules 11(1):192–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Termonia Y (1994) Molecular modeling of spider silk elasticity. Macromolecules 27(25):7378–7381

    Article  CAS  Google Scholar 

  67. Eisoldt L, Smith A, Scheibel T (2011) Decoding the secrets of spider silk. Mater Today 14(3):80–86

    Article  CAS  Google Scholar 

  68. Su I, Buehler MJ (2016) Nanomechanics of silk: the fundamentals of a strong, tough and versatile material. Nanotechnology 27(30):302001

    Article  PubMed  CAS  Google Scholar 

  69. Heidebrecht A, Scheibel T (2013) Recombinant production of spider silk proteins. Adv Appl Microbiol 82:115–153

    Article  CAS  PubMed  Google Scholar 

  70. Agnarsson I, Kuntner M, Blackledge TA (2010) Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider. PLoS One 5(9):e11234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lee S-M, Pippel E, Moutanabbir O, Kim J-H, Lee H-J, Knez M (2014) In situ raman spectroscopic study of al-infiltrated spider dragline silk under tensile deformation. ACS Appl Mater Interfaces 6(19):16827–16834

    Article  CAS  PubMed  Google Scholar 

  72. Nova A, Keten S, Pugno NM, Redaelli A, Buehler MJ (2010) Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils. Nano Lett 10(7):2626–2634

    Article  CAS  PubMed  Google Scholar 

  73. Keten S, Xu Z, Ihle B, Buehler MJ (2010) Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nat Mater 9(4):359–367

    Article  CAS  PubMed  Google Scholar 

  74. Du N, Liu XY, Narayanan J, Li LA, Lim MLM, Li DQ (2006) Design of superior spider silk: from nanostructure to mechanical properties. Biophys J 91(12):4528–4535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Anton AM, Heidebrecht A, Mahmood N, Beiner M, Scheibel T, Kremer F (2017) Foundation of the outstanding toughness in biomimetic and natural spider silk. Biomacromolecules 18(12):3954–3962

    Article  CAS  PubMed  Google Scholar 

  76. Chung H, Kim TY, Lee SY (2012) Recent advances in production of recombinant spider silk proteins. Curr Opin Biotechnol 23(6):957–964

    Article  CAS  PubMed  Google Scholar 

  77. Tokareva O, Michalczechen-Lacerda VA, Rech EL, Kaplan DL (2013) Recombinant DNA production of spider silk proteins. Microb Biotechnol 6(6):651–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Huemmerich D, Helsen CW, Quedzuweit S, Oschmann J, Rudolph R, Scheibel T (2004) Primary structure elements of spider dragline silks and their contribution to protein solubility. Biochemistry 43(42):13604–13612

    Article  CAS  PubMed  Google Scholar 

  79. Eisoldt L, Hardy JG, Heim M, Scheibel TR (2010) The role of salt and shear on the storage and assembly of spider silk proteins. J Struct Biol 170(2):413–419

    Article  CAS  PubMed  Google Scholar 

  80. Exler JH, Hummerich D, Scheibel T (2007) The amphiphilic properties of spider silks are important for spinning. Angew Chem Int Ed 46(19):3559–3562

    Article  CAS  Google Scholar 

  81. Rammensee S, Slotta U, Scheibel T, Bausch AR (2008) Assembly mechanism of recombinant spider silk proteins. Proc Natl Acad Sci U S A 105(18):6590–6595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Heidebrecht A, Eisoldt L, Diehl J, Schmidt A, Geffers M, Lang G, Scheibel T (2015) Biomimetic fibers made of recombinant spidroins with the same toughness as natural spider silk. Adv Mater 27(13):2189–2194

    Article  CAS  PubMed  Google Scholar 

  83. Renberg B, Andersson-Svahn H, Hedhammar M (2014) Mimicking silk spinning in a microchip. Sensors Actuators B Chem 195:404–408

    Article  CAS  Google Scholar 

  84. Bini E, Knight DP, Kaplan DL (2004) Mapping domain structures in silks from insects and spiders related to protein assembly. J Mol Biol 335(1):27–40

    Article  CAS  PubMed  Google Scholar 

  85. Zbilut JP, Scheibel T, Huemmerich D, Webber CL, Colafranceschi M, Giuliani A (2005) Spatial stochastic resonance in protein hydrophobicity. Phys Lett A 346(1–3):33–41

    Article  CAS  Google Scholar 

  86. Jin HJ, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424(6952):1057–1061

    Article  CAS  PubMed  Google Scholar 

  87. Rabotyagova OS, Cebe P, Kaplan DL (2009) Self-assembly of genetically engineered spider silk block copolymers. Biomacromolecules 10(2):229–236

    Article  CAS  PubMed  Google Scholar 

  88. Rabotyagova OS, Cebe P, Kaplan DL (2010) Role of polyalanine domains in β-sheet formation in spider silk block copolymers. Macromol Biosci 10(1):49–59

    Article  CAS  PubMed  Google Scholar 

  89. Borisov O, Zhulina E, Leermakers FM, Müller AE (2011) Self-assembled structures of amphiphilic ionic block copolymers: theory, self-consistent field modeling and experiment. In: Müller AHE, Borisov O (eds) Self organized nanostructures of amphiphilic block copolymers i, Advances in polymer science, vol 241. Springer, Berlin/Heidelberg, pp 57–129

    Chapter  Google Scholar 

  90. Tokareva OS, Lin S, Jacobsen MM, Huang W, Rizzo D, Li D, Simon M, Staii C, Cebe P, Wong JY, Buehler MJ, Kaplan DL (2014) Effect of sequence features on assembly of spider silk block copolymers. J Struct Biol 186(3):412–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lin S, Ryu S, Tokareva O, Gronau G, Jacobsen MM, Huang W, Rizzo DJ, Li D, Staii C, Pugno NM, Wong JY, Kaplan DL, Buehler MJ (2015) Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres. Nat Commun 6:6892

    Article  PubMed  Google Scholar 

  92. Krishnaji ST, Bratzel G, Kinahan ME, Kluge JA, Staii C, Wong JY, Buehler MJ, Kaplan DL (2013) Sequence–structure–property relationships of recombinant spider silk proteins: integration of biopolymer design, processing, and modeling. Adv Funct Mater 23(2):241–253

    Article  CAS  Google Scholar 

  93. Xia X-X, Qian Z-G, Ki CS, Park YH, Kaplan DL, Lee SY (2010) Native-sized recombinant spider silk protein produced in metabolically engineered escherichia coli results in a strong fiber. Proc Natl Acad Sci U S A 107(32):14059–14063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Thamm C, Scheibel T (2017) Recombinant production, characterization, and fiber spinning of an engineered short major ampullate spidroin (masp1s). Biomacromolecules 18(4):1365–1372

    Article  CAS  PubMed  Google Scholar 

  95. Humenik M, Magdeburg M, Scheibel T (2014) Influence of repeat numbers on self-assembly rates of repetitive recombinant spider silk proteins. J Struct Biol 186:431–437

    Article  CAS  PubMed  Google Scholar 

  96. Wohlrab S, Thamm C, Scheibel T (2014) The power of recombinant spider silk proteins. In: Asakura T, Miller T (eds) Biotechnology of silk, Biologically-inspired systems, vol 5. Springer, Dordrecht, pp 179–201

    Chapter  Google Scholar 

  97. An B, Tang-Schomer MD, Huang W, He J, Jones JA, Lewis RV, Kaplan DL (2015) Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks. Biomaterials 48:137–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fu C, Shao Z, Vollrath F (2009) Animal silks: their structures, properties and artificial production. Chem Commun 43:6515–6529

    Article  CAS  Google Scholar 

  99. Humenik M, Drechsler M, Scheibel T (2014) Controlled hierarchical assembly of spider silk-DNA chimeras into ribbons and raft-like morphologies. Nano Lett 14(7):3999–4004

    Article  CAS  PubMed  Google Scholar 

  100. Schacht K, Scheibel T (2011) Controlled hydrogel formation of a recombinant spider silk protein. Biomacromolecules 12(7):2488–2495

    Article  CAS  PubMed  Google Scholar 

  101. Slotta UK, Rammensee S, Gorb S, Scheibel T (2008) An engineered spider silk protein forms microspheres. Angew Chem Int Ed 47(24):4592–4594

    Article  CAS  Google Scholar 

  102. Humenik M, Smith AM, Arndt S, Scheibel T (2015) Ion and seed dependent fibril assembly of a spidroin core domain. J Struct Biol 191(2):130–138

    Article  CAS  PubMed  Google Scholar 

  103. Hermanson KD, Huemmerich D, Scheibel T, Bausch AR (2007) Engineered microcapsules fabricated from reconstituted spider silk. Adv Mater 19(14):1810–1815

    Article  CAS  Google Scholar 

  104. Huemmerich D, Slotta U, Scheibel T (2006) Processing and modification of films made from recombinant spider silk proteins. Appl Phys A Mater Sci Process 82(2):219–222

    Article  CAS  Google Scholar 

  105. Schacht K, Vogt J, Scheibel T (2016) Foams made of engineered recombinant spider silk proteins as 3d scaffolds for cell growth. ACS Biomater Sci Eng 2(4):517–525

    Article  CAS  PubMed  Google Scholar 

  106. Chen X, Knight DP, Vollrath F (2002) Rheological characterization of nephila spidroin solution. Biomacromolecules 3(4):644–648

    Article  CAS  PubMed  Google Scholar 

  107. Kenney JM, Knight D, Wise MJ, Vollrath F (2002) Amyloidogenic nature of spider silk. Eur J Biochem 269(16):4159–4163

    Article  CAS  PubMed  Google Scholar 

  108. Du N, Yang Z, Liu XY, Li Y, Xu HY (2011) Structural origin of the strain-hardening of spider silk. Adv Funct Mater 21(4):772–778

    Article  CAS  Google Scholar 

  109. Numata K, Kaplan DL (2011) Differences in cytotoxicity of beta-sheet peptides originated from silk and amyloid beta. Macromol Biosci 11(1):60–64

    Article  CAS  PubMed  Google Scholar 

  110. Oroudjev E, Soares J, Arcidiacono S, Thompson JB, Fossey SA, Hansma HG (2002) Segmented nanofibers of spider dragline silk: atomic force microscopy and single-molecule force spectroscopy. Proc Natl Acad Sci U S A 99(suppl 2):6460–6465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Slotta U, Hess S, Spiess K, Stromer T, Serpell L, Scheibel T (2007) Spider silk and amyloid fibrils: a structural comparison. Macromol Biosci 7(2):183–188

    Article  CAS  PubMed  Google Scholar 

  112. Humenik M, Smith AM, Arndt S, Scheibel T (2015) Data for ion and seed dependent fibril assembly of a spidroin core domain. Data Brief 4:571–576

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kol N, Adler-Abramovich L, Barlam D, Shneck RZ, Gazit E, Rousso I (2005) Self-assembled peptide nanotubes are uniquely rigid bioinspired supramolecular structures. Nano Lett 5(7):1343–1346

    Article  CAS  PubMed  Google Scholar 

  114. Smith JF, Knowles TPJ, Dobson CM, MacPhee CE, Welland ME (2006) Characterization of the nanoscale properties of individual amyloid fibrils. Proc Natl Acad Sci U S A 103(43):15806–15811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Knowles TP, Fitzpatrick AW, Meehan S, Mott HR, Vendruscolo M, Dobson CM, Welland ME (2007) Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318(5858):1900–1903

    Article  CAS  PubMed  Google Scholar 

  116. Adamcik J, Jung J-M, Flakowski J, De Los RP, Dietler G, Mezzenga R (2010) Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nat Nanotechnol 5(6):423–428

    Article  CAS  PubMed  Google Scholar 

  117. Sachse C, Grigorieff N, Fändrich M (2010) Nanoscale flexibility parameters of alzheimer amyloid fibrils determined by electron cryo-microscopy. Angew Chem Int Ed 49(7):1321–1323

    Article  CAS  Google Scholar 

  118. Knowles TPJ, Buehler MJ (2011) Nanomechanics of functional and pathological amyloid materials. Nat Nanotechnol 6(8):469–479

    Article  CAS  PubMed  Google Scholar 

  119. Lintz ES, Scheibel TR (2013) Dragline, egg stalk and byssus: a comparison of outstanding protein fibers and their potential for developing new materials. Adv Funct Mater 23(36):4467–4482

    Article  CAS  Google Scholar 

  120. Cherny I, Gazit E (2008) Amyloids: not only pathological agents but also ordered nanomaterials. Angew Chem Int Ed 47(22):4062–4069

    Article  CAS  Google Scholar 

  121. Knowles TPJ, Oppenheim TW, Buell AK, Chirgadze DY, Welland ME (2010) Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nat Nanotechnol 5(3):204–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Reches M, Gazit E (2006) Controlled patterning of aligned self-assembled peptide nanotubes. Nat Nanotechnol 1(3):195–200

    Article  CAS  PubMed  Google Scholar 

  123. Aggeli A, Nyrkova IA, Bell M, Harding R, Carrick L, McLeish TCB, Semenov AN, Boden N (2001) Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers. Proc Natl Acad Sci U S A 98(21):11857–11862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lara C, Adamcik J, Jordens S, Mezzenga R (2011) General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons. Biomacromolecules 12(5):1868–1875

    Article  CAS  PubMed  Google Scholar 

  125. Humenik M, Scheibel T (2014) Self-assembly of nucleic acids, silk and hybrid materials thereof. J Phys Condens Matter 26(50):503102

    Article  PubMed  CAS  Google Scholar 

  126. Humenik M, Scheibel T (2014) Nanomaterial building blocks based on spider silk–oligonucleotide conjugates. ACS Nano 8(2):1342–1349

    Article  CAS  PubMed  Google Scholar 

  127. Humenik M, Mohrand M, Scheibel T (2018) Self-assembly of spider silk-fusion proteins comprising enzymatic and fluorescence activity. Bioconjug Chem 29(4):898–904

    Article  CAS  PubMed  Google Scholar 

  128. Jansson R, Courtin CM, Sandgren M, Hedhammar M (2015) Rational design of spider silk materials genetically fused with an enzyme. Adv Funct Mater 25(33):5343–5352

    Article  CAS  Google Scholar 

  129. Rammensee S, Huemmerich D, Hermanson KD, Scheibel T, Bausch AR (2006) Rheological characterization of hydrogels formed by recombinantly produced spider silk. Appl Phys A Mater Sci Process 82(2):261–264

    Article  CAS  Google Scholar 

  130. Jones JA, Harris TI, Tucker CL, Berg KR, Christy SY, Day BA, Gaztambide DA, Needham NJC, Ruben AL, Oliveira PF, Decker RE, Lewis RV (2015) More than just fibers: an aqueous method for the production of innovative recombinant spider silk protein materials. Biomacromolecules 16(4):1418–1425

    Article  CAS  PubMed  Google Scholar 

  131. DeSimone E, Schacht K, Pellert A, Scheibel T (2017) Recombinant spider silk-based bioinks. Biofabrication 9(4):044104

    Article  PubMed  CAS  Google Scholar 

  132. Thamm C, DeSimone E, Scheibel T (2017) Characterization of hydrogels made of a novel spider silk protein emasp1s and evaluation for 3d printing. Macromol Biosci 17(11):1700141

    Article  CAS  Google Scholar 

  133. Jungst T, Smolan W, Schacht K, Scheibel T, Groll J (2016) Strategies and molecular design criteria for 3d printable hydrogels. Chem Rev 116(3):1496–1539

    Article  CAS  PubMed  Google Scholar 

  134. Seiffert S, Sprakel J (2012) Physical chemistry of supramolecular polymer networks. Chem Soc Rev 41(2):909–930

    Article  CAS  PubMed  Google Scholar 

  135. Schacht K, Jüngst T, Schweinlin M, Ewald A, Groll J, Scheibel T (2015) Biofabrication of cell-loaded 3d spider silk constructs. Angew Chem Int Ed 54(9):2816–2820

    Article  CAS  Google Scholar 

  136. Zhang Y, Cremer PS (2006) Interactions between macromolecules and ions: the hofmeister series. Curr Opin Chem Biol 10(6):658–663

    Article  CAS  PubMed  Google Scholar 

  137. Heim M, Keerl D, Scheibel T (2009) Spider silk: from soluble protein to extraordinary fiber. Angew Chem Int Ed 48(20):3584–3596

    Article  CAS  Google Scholar 

  138. Lammel A, Schwab M, Slotta U, Winter G, Scheibel T (2008) Processing conditions for the formation of spider silk microspheres. ChemSusChem 1(5):413–416

    Article  CAS  PubMed  Google Scholar 

  139. Blüm C, Scheibel T (2012) Control of drug loading and release properties of spider silk sub-microparticles. BioNanoScience 2(2):67–74

    Article  Google Scholar 

  140. Lucke M, Mottas I, Herbst T, Hotz C, Römer L, Schierling M, Herold HM, Slotta U, Spinetti T, Scheibel T, Winter G, Bourquin C, Engert J (2018) Engineered hybrid spider silk particles as delivery system for peptide vaccines. Biomaterials 172:105–115

    Article  CAS  PubMed  Google Scholar 

  141. Krishnaji ST, Huang W, Cebe P, Kaplan DL (2014) Influence of solution parameters on phase diagram of recombinant spider silk-like block copolymers. Macromol Chem Phys 215(12):1230–1238

    Article  CAS  Google Scholar 

  142. Florczak A, Mackiewicz A, Dams-Kozlowska H (2014) Functionalized spider silk spheres as drug carriers for targeted cancer therapy. Biomacromolecules 15(8):2971–2981

    Article  CAS  PubMed  Google Scholar 

  143. Jastrzebska K, Felcyn E, Kozak M, Szybowicz M, Buchwald T, Pietralik Z, Jesionowski T, Mackiewicz A, Dams-Kozlowska H (2016) The method of purifying bioengineered spider silk determines the silk sphere properties. Sci Rep 6:28106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Elsner MB, Herold HM, Müller-Herrmann S, Bargel H, Scheibel T (2015) Enhanced cellular uptake of engineered spider silk particles. Biomater Sci 3(3):543–551

    Article  CAS  PubMed  Google Scholar 

  145. Neubauer MP, Blüm C, Agostini E, Engert J, Scheibel T, Fery A (2013) Micromechanical characterization of spider silk particles. Biomater Sci 1(11):1160–1165

    Article  CAS  PubMed  Google Scholar 

  146. Helfricht N, Klug M, Mark A, Kuznetsov V, Blüm C, Scheibel T, Papastavrou G (2013) Surface properties of spider silk particles in solution. Biomater Sci 1(11):1166–1171

    Article  CAS  PubMed  Google Scholar 

  147. Helfricht N, Doblhofer E, Duval JFL, Scheibel T, Papastavrou G (2016) Colloidal properties of recombinant spider silk protein particles. J Phys Chem C 120(32):18015–18027

    Article  CAS  Google Scholar 

  148. Hermanson KD, Harasim MB, Scheibel T, Bausch AR (2007) Permeability of silk microcapsules made by the interfacial adsorption of protein. Phys Chem Chem Phys 9(48):6442–6446

    Article  CAS  PubMed  Google Scholar 

  149. Blüm C, Nichtl A, Scheibel T (2014) Spider silk capsules as protective reaction containers for enzymes. Adv Funct Mater 24(6):763–768

    Article  CAS  Google Scholar 

  150. Slotta U, Tammer M, Kremer F, Koelsch P, Scheibel T (2006) Structural analysis of spider silk films. Supramol Chem 18(5):465–471

    Article  CAS  Google Scholar 

  151. Metwalli E, Slotta U, Darko C, Roth SV, Scheibel T, Papadakis CM (2007) Structural changes of thin films from recombinant spider silk proteins upon post-treatment. Appl Phys A Mater Sci Process 89(3):655–661

    Article  CAS  Google Scholar 

  152. Spiess K, Wohlrab S, Scheibel T (2010) Structural characterization and functionalization of engineered spider silk films. Soft Matter 6(17):4168–4174

    Article  CAS  Google Scholar 

  153. Gomes SC, Leonor IB, Mano JF, Reis RL, Kaplan DL (2011) Antimicrobial functionalized genetically engineered spider silk. Biomaterials 32(18):4255–4266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Tucker CL, Jones JA, Bringhurst HN, Copeland CG, Addison JB, Weber WS, Mou Q, Yarger JL, Lewis RV (2014) Mechanical and physical properties of recombinant spider silk films using organic and aqueous solvents. Biomacromolecules 15(8):3158–3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Spiess K, Ene R, Keenan CD, Senker J, Kremer F, Scheibel T (2011) Impact of initial solvent on thermal stability and mechanical properties of recombinant spider silk films. J Mater Chem 21(35):13594–13604

    Article  CAS  Google Scholar 

  156. Young SL, Gupta M, Hanske C, Fery A, Scheibel T, Tsukruk VV (2012) Utilizing conformational changes for patterning thin films of recombinant spider silk proteins. Biomacromolecules 13(10):3189–3199

    Article  CAS  PubMed  Google Scholar 

  157. Wohlrab S, Spie ST (2012) Varying surface hydrophobicities of coatings made of recombinant spider silk proteins. J Mater Chem 22(41):22050–22054

    Article  CAS  Google Scholar 

  158. Huang W, Krishnaji S, Tokareva OR, Kaplan D, Cebe P (2014) Influence of water on protein transitions: morphology and secondary structure. Macromolecules 47(22):8107–8114

    Article  CAS  Google Scholar 

  159. Currie HA, Deschaume O, Naik RR, Perry CC, Kaplan DL (2011) Genetically engineered chimeric silk-silver binding proteins. Adv Funct Mater 21(15):2889–2895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Junghans F, Morawietz M, Conrad U, Scheibel T, Heilmann A, Spohn U (2006) Preparation and mechanical properties of layers made of recombinant spider silk proteins and silk from silk worm. Appl Phys A Mater Sci Process 82(2):253–260

    Article  CAS  Google Scholar 

  161. Wohlrab S, Müller S, Schmidt A, Neubauer S, Kessler H, Leal-Egaña A, Scheibel T (2012) Cell adhesion and proliferation on rgd-modified recombinant spider silk proteins. Biomaterials 33(28):6650–6659

    Article  CAS  PubMed  Google Scholar 

  162. Widhe M, Johansson U, Hillerdahl C-O, Hedhammar M (2013) Recombinant spider silk with cell binding motifs for specific adherence of cells. Biomaterials 34(33):8223–8234

    Article  CAS  PubMed  Google Scholar 

  163. Widhe M, Bysell H, Nystedt S, Schenning I, Malmsten M, Johansson J, Rising A, Hedhammar M (2010) Recombinant spider silk as matrices for cell culture. Biomaterials 31(36):9575–9585

    Article  CAS  PubMed  Google Scholar 

  164. Lewicka M, Hermanson O, Rising AU (2012) Recombinant spider silk matrices for neural stem cell cultures. Biomaterials 33(31):7712–7717

    Article  CAS  PubMed  Google Scholar 

  165. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) (2004) Biomaterials science: an introduction to materials in medicine, 2nd edn. Academic, Kidlington

    Google Scholar 

  166. Hardy JG, Scheibel TR (2009) Silk-inspired polymers and proteins. Biochem Soc Trans 37(Pt 4):677–681

    Article  CAS  PubMed  Google Scholar 

  167. Leal-Egana A, Scheibel T (2010) Silk-based materials for biomedical applications. Biotechnol Appl Biochem 55(3):155–167

    Article  CAS  PubMed  Google Scholar 

  168. Aigner TB, DeSimone E, Scheibel T (2018) Biomedical applications of recombinant silk-based materials. Adv Mater 30(19):1704636

    Article  CAS  Google Scholar 

  169. Vollrath F, Barth P, Basedow A, Engstrom W, List H (2002) Local tolerance to spider silks and protein polymers in vivo. In Vivo 16(4):229–234

    CAS  PubMed  Google Scholar 

  170. Gellynck K, Verdonk PC, Van Nimmen E, Almqvist KF, Gheysens T, Schoukens G, Van Langenhove L, Kiekens P, Mertens J, Verbruggen G (2008) Silkworm and spider silk scaffolds for chondrocyte support. J Mater Sci Mater Med 19(11):3399–3409

    Article  CAS  PubMed  Google Scholar 

  171. Allmeling C, Jokuszies A, Reimers K, Kall S, Choi CY, Brandes G, Kasper C, Scheper T, Guggenheim M, Vogt PM (2008) Spider silk fibres in artificial nerve constructs promote peripheral nerve regeneration. Cell Prolif 41(3):408–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Radtke C, Allmeling C, Waldmann KH, Reimers K, Thies K, Schenk HC, Hillmer A, Guggenheim M, Brandes G, Vogt PM (2011) Spider silk constructs enhance axonal regeneration and remyelination in long nerve defects in sheep. PLoS One 6(2):e16990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Moisenovich MM, Pustovalova OL, Arhipova AY, Vasiljeva TV, Sokolova OS, Bogush VG, Debabov VG, Sevastianov VI, Kirpichnikov MP, Agapov II (2011) In vitro and in vivo biocompatibility studies of a recombinant analogue of spidroin 1 scaffolds. J Biomed Mater Res A 96(1):125–131

    Article  CAS  PubMed  Google Scholar 

  174. Camilla Fredriksson MH, Feinstein R, Nordling K, Kratz G, Johansson J, Rising FHA (2009) Tissue response to subcutaneously implanted recombinant spider silk: an in vivo study. Materials 2(4):1908–1922

    Article  PubMed Central  CAS  Google Scholar 

  175. Langer R (1990) New methods of drug delivery. Science 249(4976):1527–1533

    Article  CAS  PubMed  Google Scholar 

  176. Numata K, Kaplan DL (2010) Silk-based gene carriers with cell membrane destabilizing peptides. Biomacromolecules 11(11):3189–3195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Numata K, Reagan MR, Goldstein RH, Rosenblatt M, Kaplan DL (2011) Spider silk-based gene carriers for tumor cell-specific delivery. Bioconjug Chem 22(8):1605–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Numata K, Mieszawska-Czajkowska AJ, Kvenvold LA, Kaplan DL (2012) Silk-based nanocomplexes with tumor-homing peptides for tumor-specific gene delivery. Macromol Biosci 12(1):75–82

    Article  CAS  PubMed  Google Scholar 

  179. Doblhofer E, Scheibel T (2015) Engineering of recombinant spider silk proteins allows defined uptake and release of substances. J Pharm Sci 104(3):988–994

    Article  CAS  PubMed  Google Scholar 

  180. Wang X, Yucel T, Lu Q, Hu X, Kaplan DL (2010) Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials 31(6):1025–1035

    Article  CAS  PubMed  Google Scholar 

  181. Patil Y, Panyam J (2009) Polymeric nanoparticles for sirna delivery and gene silencing. Int J Pharm 367(1–2):195–203

    Article  CAS  PubMed  Google Scholar 

  182. Sushmita Sundar JK, Kundu SC (2010) Biopolymeric nanoparticles. Sci Technol Adv Mater 11(1):1–13

    Google Scholar 

  183. Liebmann B, Huemmerich D, Scheibel T, Fehr M (2008) Formulation of poorly water-soluble substances using self-assembling spider silk protein. Colloids Surf A Physicochem Eng Asp 331(1–2):126–132

    Article  CAS  Google Scholar 

  184. Lammel A, Schwab M, Hofer M, Winter G, Scheibel T (2011) Recombinant spider silk particles as drug delivery vehicles. Biomaterials 32(8):2233–2240

    Article  CAS  PubMed  Google Scholar 

  185. Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  CAS  PubMed  Google Scholar 

  186. Schacht K, Scheibel T (2014) Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications. Curr Opin Biotechnol 29:62–69

    Article  CAS  PubMed  Google Scholar 

  187. Petzold J, Aigner TB, Touska F, Zimmermann K, Scheibel T, Engel FB (2017) Surface features of recombinant spider silk protein eadf4(κ16)-made materials are well-suited for cardiac tissue engineering. Adv Funct Mater 27(36):1701427

    Article  CAS  Google Scholar 

  188. Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T (1981) Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 211(4486):1052–1054

    Article  CAS  PubMed  Google Scholar 

  189. Burke JF, Yannas IV, Quinby WC Jr, Bondoc CC, Jung WK (1981) Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 194(4):413–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Wendt H, Hillmer A, Reimers K, Kuhbier JW, Schafer-Nolte F, Allmeling C, Kasper C, Vogt PM (2011) Artificial skin-culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres. PLoS One 6(7):e21833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Widhe M, Shalaly ND, Hedhammar M (2016) A fibronectin mimetic motif improves integrin mediated cell biding to recombinant spider silk matrices. Biomaterials 74:256–266

    Article  CAS  PubMed  Google Scholar 

  192. Millennium WSGotBoMCatSotN (2003) The burden of musculoskeletal conditions at the start of the new millennium. World Health Organ Tech Rep Ser 919:1–218

    Google Scholar 

  193. Hing KA (2004) Bone repair in the twenty-first century: biology, chemistry or engineering? Philos Transact A Math Phys Eng Sci 362(1825):2821–2850

    Article  CAS  Google Scholar 

  194. Parikh SN (2002) Bone graft substitutes in modern orthopedics. Orthopedics 25(11):1301–1309. quiz 1310-1301

    PubMed  Google Scholar 

  195. Mark DE, Hollinger JO, Hastings C Jr, Chen G, Marden LJ, Reddi AH (1990) Repair of calvarial nonunions by osteogenin, a bone-inductive protein. Plast Reconstr Surg 86(4):623–630. discussion 631-622

    Article  CAS  PubMed  Google Scholar 

  196. Huang J, Wong C, George A, Kaplan DL (2007) The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation. Biomaterials 28(14):2358–2367

    Article  CAS  PubMed  Google Scholar 

  197. Wong Po Foo C, Patwardhan SV, Belton DJ, Kitchel B, Anastasiades D, Huang J, Naik RR, Perry CC, Kaplan DL (2006) Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proc Natl Acad Sci U S A 103(25):9428–9433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Belton DJ, Mieszawska AJ, Currie HA, Kaplan DL, Perry CC (2012) Silk-silica composites from genetically engineered chimeric proteins: materials properties correlate with silica condensation rate and colloidal stability of the proteins in aqueous solution. Langmuir 28(9):4373–4381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Mieszawska AJ, Nadkarni LD, Perry CC, Kaplan DL (2010) Nanoscale control of silica particle formation via silk-silica fusion proteins for bone regeneration. Chem Mater 22(20):5780–5785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Chen MB, Zhang F, Lineaweaver WC (2006) Luminal fillers in nerve conduits for peripheral nerve repair. Ann Plast Surg 57(4):462–471

    Article  CAS  PubMed  Google Scholar 

  201. Ciardelli G, Chiono V (2006) Materials for peripheral nerve regeneration. Macromol Biosci 6(1):13–26

    Article  CAS  PubMed  Google Scholar 

  202. Evans GR, Brandt K, Katz S, Chauvin P, Otto L, Bogle M, Wang B, Meszlenyi RK, Lu L, Mikos AG, Patrick CW Jr (2002) Bioactive poly(l-lactic acid) conduits seeded with schwann cells for peripheral nerve regeneration. Biomaterials 23(3):841–848

    Article  CAS  PubMed  Google Scholar 

  203. Lietz M, Dreesmann L, Hoss M, Oberhoffner S, Schlosshauer B (2006) Neuro tissue engineering of glial nerve guides and the impact of different cell types. Biomaterials 27(8):1425–1436

    Article  CAS  PubMed  Google Scholar 

  204. Lundborg G, Rosen B, Abrahamson SO, Dahlin L, Danielsen N (1994) Tubular repair of the median nerve in the human forearm. preliminary findings. J Hand Surg (Br) 19(3):273–276

    Article  CAS  Google Scholar 

  205. Stanec S, Stanec Z (1998) Reconstruction of upper-extremity peripheral-nerve injuries with eptfe conduits. J Reconstr Microsurg 14(4):227–232

    Article  CAS  PubMed  Google Scholar 

  206. Letourneau PC, Condic ML, Snow DM (1994) Interactions of developing neurons with the extracellular matrix. J Neurosci 14(3 Pt 1):915–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Allmeling C, Jokuszies A, Reimers K, Kall S, Vogt PM (2006) Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit. J Cell Mol Med 10(3):770–777

    Article  PubMed  Google Scholar 

  208. Borkner CB, Elsner MB, Scheibel T (2014) Coatings and films made of silk proteins. ACS Appl Mater Interfaces 6(18):15611–15625

    Article  CAS  PubMed  Google Scholar 

  209. Zeplin PH, Berninger AK, Maksimovikj NC, van Gelder P, Scheibel T, Walles H (2014) Improving the biocompatibility of silicone implants using spider silk coatings: immunohistochemical analysis of capsule formation. Handchir Mikrochir Plast Chir 46(6):336–341

    Article  CAS  PubMed  Google Scholar 

  210. Borkner CB, Wohlrab S, Möller E, Lang G, Scheibel T (2017) Surface modification of polymeric biomaterials using recombinant spider silk proteins. ACS Biomater Sci Eng 3(5):767–775

    Article  CAS  PubMed  Google Scholar 

  211. Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Markwald R (2009) Biofabrication: a 21st century manufacturing paradigm. Biofabrication 1(2):022001

    Article  CAS  PubMed  Google Scholar 

  212. Groll J, Boland T, Blunk T, Burdick JA, Cho DW, Dalton PD, Derby B, Forgacs G, Li Q, Mironov VA, Moroni L, Nakamura M, Shu W, Takeuchi S, Vozzi G, Woodfield TB, Xu T, Yoo JJ, Malda J (2016) Biofabrication: reappraising the definition of an evolving field. Biofabrication 8(1):013001

    Article  PubMed  CAS  Google Scholar 

  213. Malda J, Visser J, Melchels FP, Jungst T, Hennink WE, Dhert WJ, Groll J, Hutmacher DW (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25(36):5011–5028

    Article  CAS  PubMed  Google Scholar 

  214. Murphy SV, Atala A (2014) 3d bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Article  CAS  PubMed  Google Scholar 

  215. Skardal A, Atala A (2015) Biomaterials for integration with 3-d bioprinting. Ann Biomed Eng 43(3):730–746

    Article  PubMed  Google Scholar 

  216. Catros S, Fricain JC, Guillotin B, Pippenger B, Bareille R, Remy M, Lebraud E, Desbat B, Amedee J, Guillemot F (2011) Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication 3(2):025001

    Article  PubMed  CAS  Google Scholar 

  217. Chimene D, Lennox KK, Kaunas RR, Gaharwar AK (2016) Advanced bioinks for 3d printing: a materials science perspective. Ann Biomed Eng 44(6):2090–2102

    Article  PubMed  Google Scholar 

  218. DeSimone E, Schacht K, Jungst T, Groll J, Scheibel T (2015) Biofabrication of 3d constructs: fabrication technologies and spider silk proteins as bioinks. Pure Appl Chem 87(8):737–749

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Elite Network of Bavaria (ENB) and TRR 225 C01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Scheibel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Humenik, M., Pawar, K., Scheibel, T. (2019). Nanostructured, Self-Assembled Spider Silk Materials for Biomedical Applications. In: Perrett, S., Buell, A., Knowles, T. (eds) Biological and Bio-inspired Nanomaterials. Advances in Experimental Medicine and Biology, vol 1174. Springer, Singapore. https://doi.org/10.1007/978-981-13-9791-2_6

Download citation

Publish with us

Policies and ethics