Skip to main content

Peptide Self-Assembly and Its Modulation: Imaging on the Nanoscale

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1174))

Abstract

This chapter intends to review the progress in obtaining site-specific structural information for peptide assemblies using scanning tunneling microscopy. The effects on assembly propensity due to mutations and modifications in peptide sequences, small organic molecules and conformational transitions of peptides are identified. The obtained structural insights into the sequence-dependent assembly propensity could inspire rational design of peptide architectures at the molecular level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

4Bpy:

4,4′-bipyridyl

AD:

Alzheimer’s disease

AFM:

Atomic force microscopy

ALS:

Amyotrophic lateral sclerosis

Aβ:

Beta-amyloid peptides

CD:

Circular dichroism

DPE:

1,2-di(4-pyridyl)-ethylene

FTIR:

Fourier transform infrared spectroscopy

FTLD:

Frontotemporal lobar degeneration

hIAPP:

Human islet amyloid polypeptide

HOPG:

Highly oriented pyrolytic graphite

MD:

Molecular dynamics

NMR:

Nuclear magnetic resonance

PcCu(SO3Na)4 :

Copper phthalocyanine tetrasulfonate sodium

STM:

Scanning tunneling microscopy

TDP-43:

TAR DNA-binding protein 43

TEM:

Transmission electron microscopy

ThT:

Thioflavin T

TSE:

Transmissible spongiform encephalopathy

UHV:

Ultrahigh vacuum

VNTRs:

Variable number of tandem repeats

XRD:

X-ray diffraction

References

  1. Whitesides GM, Mathias JP, Seto CT (1991) Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254:1312–1319

    Article  CAS  PubMed  Google Scholar 

  2. Zhao X, Zhang S (2006) Molecular designer self-assembling peptides. Chem Soc Rev 35:1105–1110

    Article  CAS  PubMed  Google Scholar 

  3. Yang YL, Wang C (2009) Hierarchical construction of self-assembled low-dimensional molecular architectures observed by using scanning tunneling microscopy. Chem Soc Rev 38:2576–2589

    Article  CAS  PubMed  Google Scholar 

  4. Gazit E (2010) Bioinspired chemistry diversity for self-assembly. Nat Chem 2:1010–1011

    Article  CAS  PubMed  Google Scholar 

  5. Stupp SI (2010) Self-assembly and biomaterials. Nano Lett 10:4783–4786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Santoso S, Hwang W, Hartman H, Zhang SG (2002) Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles. Nano Lett 2:687–691

    Article  CAS  Google Scholar 

  7. Von Maltzahn G, Vauthey S, Santoso S, Zhang SU (2003) Positively charged surfactant-like peptides self-assemble into nanostructures. Langmuir 19:4332–4337

    Article  CAS  Google Scholar 

  8. Zhang SG (2002) Emerging biological materials through molecular self-assembly. Biotechnol Adv 20:321–339

    Article  CAS  PubMed  Google Scholar 

  9. Ellis-Behnke RG, Liang YX, You SW, Tay DKC, Zhang SG, So KF, Schneider GE (2006) Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci U S A 103:5054–5059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Narmoneva DA, Oni O, Sieminski AL, Zhang SG, Gertler JP, Kamm RD, Lee RT (2005) Self-assembling short oligopeptides and the promotion of angiogenesis. Biomaterials 26:4837–4846

    Article  CAS  PubMed  Google Scholar 

  11. Yang YL, Khoe U, Wang XM, Horii A, Yokoi H, Zhang SG (2009) Designer self-assembling peptide nanomaterials. Nano Today 4:193–210

    Article  CAS  Google Scholar 

  12. Goldberg M, Langer R, Jia XQ (2007) Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 18:241–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fairman R, Akerfeldt KS (2005) Peptides as novel smart materials. Curr Opin Struct Biol 15:453–463

    Article  CAS  PubMed  Google Scholar 

  14. Scanlon S, Aggeli A (2008) Self-assembling peptide nanotubes. Nano Today 3:22–30

    Article  CAS  Google Scholar 

  15. Fleming S, Ulijn RV (2014) Design of nanostructures based on aromatic peptide amphiphiles. Chem Soc Rev 43:8150–8177

    Article  CAS  PubMed  Google Scholar 

  16. Sethuraman A, Belfort G (2005) Protein structural perturbation and aggregation on homogeneous surfaces. Biophys J 88:1322–1333

    Article  CAS  PubMed  Google Scholar 

  17. Bhakta SA, Evans E, Benavidez TE, Garcia CD (2015) Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: a review. Anal Chim Acta 872:7–25

    Article  CAS  PubMed  Google Scholar 

  18. Peng Q, Mu HL (2016) The potential of protein-nanomaterial interaction for advanced drug delivery. J Control Release 225:121–132

    Article  CAS  PubMed  Google Scholar 

  19. Morimoto A, Irie K, Murakami K, Masuda Y, Ohigashi H, Nagao M, Fukuda H, Shimizu T, Shirasawa T (2004) Analysis of the secondary structure of beta-amyloid (A beta 42) fibrils by systematic proline replacement. J Biol Chem 279:52781–52788

    Article  CAS  PubMed  Google Scholar 

  20. Senguen FT, Lee NR, Gu X, Ryan DM, Doran TM, Anderson EA, Nilsson BL (2011) Probing aromatic, hydrophobic, and steric effects on the self-assembly of an amyloid-beta fragment peptide. Mol BioSyst 7:486–496

    Article  CAS  PubMed  Google Scholar 

  21. Zandomeneghi G, Krebs MRH, Mccammon MG, Fandrich M (2004) FTIR reveals structural differences between native beta-sheet proteins and amyloid fibrils. Protein Sci 13:3314–3321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Makin OS, Serpell LC (2005) Structures for amyloid fibrils. FEBS J 272:5950–5961

    Article  CAS  PubMed  Google Scholar 

  23. Sachse C, Xu C, Wieligmann K, Diekmann S, Grigorieff N, Faendrich M (2006) Quaternary structure of a mature amyloid fibril from Alzheimer’s A beta(1-40) peptide. J Mol Biol 362:347–354

    Article  CAS  PubMed  Google Scholar 

  24. Kim YS, Liu L, Axelsen PH, Hochstrasser RM (2008) Two-dimensional infrared spectra of isotopically diluted amyloid fibrils from A beta 40. Proc Natl Acad Sci U S A 105:7720–7725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci U S A 99:16742–16747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu L, Zhang L, Niu L, Xu M, Mao X, Yang Y, Wang C (2011) Observation of reduced cytotoxicity of aggregated amyloidogenic peptides with chaperone-like molecules. ACS Nano 5:6001–6007

    Article  CAS  PubMed  Google Scholar 

  27. Mao X, Ma X, Liu L, Niu L, Yang Y, Wang C (2009) Structural characteristics of the beta-sheet-like human and rat islet amyloid polypeptides as determined by scanning tunneling microscopy. J Struct Biol 167:209–215

    Article  CAS  PubMed  Google Scholar 

  28. Makin OS, Atkins E, Sikorski P, Johansson J, Serpell LC (2005) Molecular basis for amyloid fibril formation and stability. Proc Natl Acad Sci U S A 102:315–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435:773–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CCF (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273:729–739

    Article  CAS  PubMed  Google Scholar 

  31. Makin OS, Serpell LC (2004) Structural characterisation of islet amyloid polypeptide fibrils. J Mol Biol 335:1279–1288

    Article  CAS  Google Scholar 

  32. Serpell LC, Blake CCF, Fraser PE (2000) Molecular structure of a fibrillar Alzheimer’s A beta fragment. Biochemistry 39:13269–13275

    Article  CAS  PubMed  Google Scholar 

  33. Jaroniec CP, Macphee CE, Bajaj VS, Mcmahon MT, Dobson CM, Griffin RG (2004) High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci U S A 101:711–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Petkova AT, Leapman RD, Guo ZH, Yau WM, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. Science 307:262–265

    Article  CAS  PubMed  Google Scholar 

  35. Iwata K, Fujiwara T, Matsuki Y, Akutsu H, Takahashi S, Naiki H, Goto Y (2006) 3D structure of amyloid protofilaments of beta(2)-microglobulin fragment probed by solid-state NMR. Proc Natl Acad Sci U S A 103:18119–18124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tycko R (2006) Solid-state NMR as a probe of amyloid structure. Protein Peptide Lett 13:229–234

    Article  CAS  Google Scholar 

  37. Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the Het-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526

    Article  CAS  PubMed  Google Scholar 

  38. Nielsen JT, Bjerring M, Jeppesen MD, Pedersen RO, Pedersen JM, Hein KL, Vosegaard T, Skrydstrup T, Otzen DE, Nielsen NC (2009) Unique identification of supramolecular structures in amyloid fibrils by solid-state NMR spectroscopy. Angew Chem Int Ed 48:2118–2121

    Article  CAS  Google Scholar 

  39. Luca S, Yau W-M, Leapman R, Tycko R (2007) Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. Biochemistry 46:13505–13522

    Article  CAS  PubMed  Google Scholar 

  40. Qiu XH, Wang C, Zeng QD, Xu B, Yin SX, Wang HN, Xu SD, Bai CL (2000) Alkane-assisted adsorption and assembly of phthalocyanines and porphyrins. J Am Chem Soc 122:5550–5556

    Article  CAS  Google Scholar 

  41. Chang S, Liu R, Wang L, Li M, Deng K, Zheng Q, Zeng Q (2016) Formation of ordered coronene clusters in template utilizing the structural transformation of hexaphenylbenzene derivative networks on graphite surface. ACS Nano 10:342–348

    Article  CAS  PubMed  Google Scholar 

  42. Cyr DM, Venkataraman B, Flynn GW (1996) STM investigations of organic molecules physisorbed at the liquid-solid interface. Chem Mater 8:1600–1615

    Article  CAS  Google Scholar 

  43. De Feyter S, De Schryver FC (2003) Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chem Soc Rev 32:139–150

    Article  PubMed  CAS  Google Scholar 

  44. Dhirani AA, Zehner RW, Hsung RP, Guyotsionnest P, Sita LR (1996) Self-assembly of conjugated molecular rods: a high-resolution STM study. J Am Chem Soc 118:3319–3320

    Article  CAS  Google Scholar 

  45. Yang GH, Liu GY (2003) New insights for self-assembled monolayers of organothiols on Au(111) revealed by scanning tunneling microscopy. J Phys Chem B 107:8746–8759

    Article  CAS  Google Scholar 

  46. Xu J, Xiao X, Deng K, Zeng Q (2016) Transformation of self-assembly of a TTF derivative at the 1-phenyloctane/HOPG interface studied by STM-from a nanoporous network to a linear structure. Nanoscale 8:1652–1657

    Article  CAS  PubMed  Google Scholar 

  47. Barth JV, Costantini G, Kern K (2005) Engineering atomic and molecular nanostructures at surfaces. Nature 437:671–679

    Article  CAS  PubMed  Google Scholar 

  48. Xu B, Yin SX, Wang C, Zeng QD, Qiu XH, Bai CL (2001) Identification of hydrogen bond characterizations of isomeric 4Bpy and 2Bpy by STM. Surf Interface Anal 32:245–247

    Article  CAS  Google Scholar 

  49. Guo Y, Wang C, Hou J, Yang A, Zhang X, Wang Y, Zhang M, Yang Y, Wang C (2012) Odd-even sequence effect of surface-mediated peptide assemblies observed by scanning tunneling microscopy. Chin J Chem 30:1987–1991

    Article  CAS  Google Scholar 

  50. Mao XB, Guo YY, Luo Y, Niu L, Liu L, Ma XJ, Wang HB, Yang YL, Wei GH, Wang C (2013) Sequence effects on peptide assembly characteristics observed by using scanning tunneling microscopy. J Am Chem Soc 135:2181–2187

    Article  CAS  PubMed  Google Scholar 

  51. Stensgaard I (2003) Adsorption of di-L-alanine on Cu(110) investigated with scanning tunneling microscopy. Surf Sci 545:L747–L752

    Article  CAS  Google Scholar 

  52. Liu L, Zhang L, Mao XB, Niu L, Yang YL, Wang C (2009) Chaperon-mediated single molecular approach toward modulating A beta peptide aggregation. Nano Lett 9:4066–4072

    Article  CAS  PubMed  Google Scholar 

  53. Ma X, Liu L, Mao X, Niu L, Deng K, Wu W, Li Y, Yang Y, Wang C (2009) Amyloid beta (1-42) folding multiplicity and single-molecule binding behavior studied with STM. J Mol Biol 388:894–901

    Article  CAS  PubMed  Google Scholar 

  54. Lingenfelder M, Tomba G, Costantini G, Ciacchi LC, De Vita A, Kern K (2007) Tracking the chiral recognition of adsorbed dipeptides at the single-molecule level. Angew Chem Int Ed 46:4492–4495

    Article  CAS  Google Scholar 

  55. Kalashnyk N, Nielsen JT, Nielsen EH, Skrydstrup T, Otzen DE, Laegsgaard E, Wang C, Besenbacher F, Nielsen NC, Linderoth TR (2012) Scanning tunneling microscopy reveals single-molecule insights into the self-assembly of amyloid fibrils. ACS Nano 6:6882–6889

    Article  CAS  PubMed  Google Scholar 

  56. Wang YB, Niu L, Li YB, Mao XB, Yang YL, Wang C (2010) Single molecule studies of cyclic peptides using molecular matrix at liquid/solid interface by scanning tunneling microscopy. Langmuir 26:16305–16311

    Article  CAS  PubMed  Google Scholar 

  57. Claridge SA, Thomas JC, Silverman MA, Schwartz JJ, Yang YL, Wang C, Weiss PS (2013) Differentiating amino acid residues and side chain orientations in peptides using scanning tunneling microscopy. J Am Chem Soc 135:18528–18535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, Tagliavini F (1993) Neurotoxicity of a prion protein-fragment. Nature 362:543–546

    Article  CAS  PubMed  Google Scholar 

  59. Lorenzo A, Razzaboni B, Weir GC, Yankner BA (1994) Pancreatic-islet cell toxicity of amylin associated with type-2 diabetes-mellitus. Nature 368:756–760

    Article  CAS  PubMed  Google Scholar 

  60. Goedert M, Spillantini MG (2006) A century of Alzheimer’s disease. Science 314:777–781

    Article  CAS  PubMed  Google Scholar 

  61. Roberson ED, Mucke L (2006) 100 years and counting: prospects for defeating Alzheimer’s disease. Science 314:781–784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Brody DL, Magnoni S, Schwetye KE, Spinner ML, Esparza TJ, Stocchetti N, Zipfel GJ, Holtzman DM (2008) Amyloid-beta dynamics correlate with neurological status in the injured human brain. Science 321:1221–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen-Plotkin AS, Lee VMY, Trojanowski JQ (2010) TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol 6:211–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Levy E, Carman MD, Fernandezmadrid IJ, Power MD, Lieberburg I, Vanduinen SG, Bots G, Luyendijk W, Frangione B (1990) Mutation of the Alzheimer’s-disease amyloid gene in hereditary cerebral-hemorrhage, Dutch type. Science 248:1124–1126

    Article  CAS  PubMed  Google Scholar 

  65. Hendriks L, Vanduijn CM, Cras P, Cruts M, Vanhul W, Vanharskamp F, Warren A, Mcinnis MG, Antonarakis SE, Martin JJ, Hofman A, Van Broeckhoven C (1992) Presenile-dementia and cerebral-hemorrhage linked to a mutation at Codon-692 of the beta-amyloid precursor protein gene. Nat Genet 1:218–221

    Article  CAS  PubMed  Google Scholar 

  66. Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, Stenh C, Luthman J, Teplow DB, Younkin SG, Naslund J, Lannfelt L (2001) The ‘arctic’ APP mutation (E693G) causes Alzheimer’s disease by enhanced A beta protofibril formation. Nat Neurosci 4:887–893

    Article  CAS  PubMed  Google Scholar 

  67. Grabowski TJ, Cho HS, Vonsattel JPG, Rebeck GW, Greenberg SM (2001) Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Ann Neurol 49:697–705

    Article  CAS  PubMed  Google Scholar 

  68. Janssen JC, Beck JA, Campbell TA, Dickinson A, Fox NC, Harvey RJ, Houlden H, Rossor MN, Collinge J (2003) Early onset familial Alzheimer’s disease – mutation frequency in 31 families. Neurology 60:235–239

    Article  CAS  PubMed  Google Scholar 

  69. Wakutani Y, Watanabe K, Adachi Y, Wada-Isoe K, Urakami K, Ninomiya H, Saido TC, Hashimoto T, Iwatsubo T, Nakashima K (2004) Novel amyloid precursor protein gene missense mutation (D678N) in probable familial Alzheimer’s disease. J Neurol Neurosurg Psychiatry 75:1039–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Di Fede G, Catania M, Morbin M, Rossi G, Suardi S, Mazzoleni G, Merlin M, Giovagnoli AR, Prioni S, Erbetta A, Falcone C, Gobbi M, Colombo L, Bastone A, Beeg M, Manzoni C, Francescucci B, Spagnoli A, Cantu L, Del Favero E, Levy E, Salmona M, Tagliavini F (2009) A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis. Science 323:1473–1477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, Mccluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VMY (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    Article  CAS  PubMed  Google Scholar 

  72. Lagier-Tourenne C, Polymenidou M, Cleveland DW (2010) TDP-43 and fus/tls: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19:R46–R64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mao XB, Wang CX, Wu XK, Ma XJ, Liu L, Zhang L, Niu L, Guo YY, Li DH, Yang YL, Wang C (2011) Beta structure motifs of islet amyloid polypeptides identified through surface-mediated assemblies. Proc Natl Acad Sci U S A 108:19605–19610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu M, Zhu L, Liu J, Yang Y, Wu JY, Wang C (2013) Characterization of beta-domains in C-terminal fragments of TDP-43 by scanning tunneling microscopy. J Struct Biol 181:11–16

    Article  CAS  PubMed  Google Scholar 

  75. Yu LL, Sun ZY, Yu Y, Qu FY, Yang YL, Li YM, Wang C (2016) Molecular evidence of glycosylation effect on the peptide assemblies identified with scanning tunneling microscopy. J Phys Chem C 120:6577–6582

    Article  CAS  Google Scholar 

  76. Nie Q, Du X-G, Geng M-Y (2011) Small molecule inhibitors of amyloid beta peptide aggregation as a potential therapeutic strategy for Alzheimer’s disease. Acta Pharmacol Sin 32:545–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Porat Y, Abramowitz A, Gazit E (2006) Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 67:27–37

    Article  CAS  PubMed  Google Scholar 

  78. Stains CI, Mondal K, Ghosh I (2007) Molecules that target beta-amyloid. ChemMedChem 2:1674–1692

    Article  CAS  PubMed  Google Scholar 

  79. Wang CX, Yang AH, Li X, Li DH, Zhang M, Du HW, Li C, Guo YY, Mao XB, Dong MD, Besenbacher F, Yang YL, Wang C (2012) Observation of molecular inhibition and binding structures of amyloid peptides. Nanoscale 4:1895–1909

    Article  CAS  PubMed  Google Scholar 

  80. Yu Y, Yang YL, Wang C (2015) Site-specific analysis of amyloid assemblies by using scanning tunneling microscopy. Chin J Chem 33:24–34

    Article  CAS  Google Scholar 

  81. Yang YL, Wang C (2013) Single-molecule studies on individual peptides and peptide assemblies on surfaces. Philos Trans A Math Phys Eng Sci 371:20

    Google Scholar 

  82. Dujardin G, Mayne A, Robert O, Rose F, Joachim C, Tang H (1998) Vertical manipulation of individual atoms by a direct STM tip-surface contact on Ge(111). Phys Rev Lett 80:3085–3088

    Article  CAS  Google Scholar 

  83. Hwang IS, Chang SH, Fang CK, Chen LJ, Tsong TT (2004) Probing dynamics of a phase transition of two-dimensional nano-domains with STM imaging and manipulation. Surf Sci 572:L331–L337

    Article  CAS  Google Scholar 

  84. Uchida H, Huang D, Grey F, Aono M (1993) Site-specific measurement of adatom binding-energy differences by atom extraction with the STM. Phys Rev Lett 70:2040–2043

    Article  CAS  PubMed  Google Scholar 

  85. Yu Y, Yang Y, Wang C (2015) Identification of core segment of amyloidal peptide mediated by chaperone molecules by using scanning tunneling microscopy. ChemPhysChem 16:2995–2999

    Article  CAS  PubMed  Google Scholar 

  86. Niu L, Liu L, Xu M, Cramer J, Gothelf KV, Dong MD, Besenbacher F, Zeng QD, Yang YL, Wang C (2014) Transformation of beta-sheet structures of the amyloid peptide induced by molecular modulators. Chem Commun 50:8923–8926

    Article  CAS  Google Scholar 

  87. Niu L, Liu L, Xi WH, Han QS, Li Q, Yu Y, Huang QX, Qu FY, Xu M, Li YB, Du HW, Yang R, Cramer J, Gothelf KV, Dong MD, Besenbacher F, Zeng QD, Wang C, Wei GH, Yang YL (2016) Synergistic inhibitory effect of peptide-organic coassemblies on amyloid aggregation. ACS Nano 10:4143–4153

    Article  CAS  PubMed  Google Scholar 

  88. Lansbury PT, Costa PR, Griffiths JM, Simon EJ, Auger M, Halverson KJ, Kocisko DA, Hendsch ZS, Ashburn TT, Spencer RGS, Tidor B, Griffin RG (1995) Structural model for the beta-amyloid fibril based on interstrand alignment of an antiparallel-sheet comprising a C-terminal peptide. Nat Struct Biol 2:990–998

    Article  CAS  PubMed  Google Scholar 

  89. Liu L, Niu L, Xu M, Han QS, Duan HY, Dong MD, Besenbacher F, Wang C, Yang YL (2014) Molecular tethering effect of C-terminus of amyloid peptide A beta 42. ACS Nano 8:9503–9510

    Article  CAS  PubMed  Google Scholar 

  90. Ivanova MI, Sawaya MR, Gingery M, Attinger A, Eisenberg D (2004) An amyloid-forming segment of beta 2-microglobulin suggests a molecular model for the fibril. Proc Natl Acad Sci U S A 101:10584–10589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Functional amyloid – from bacteria to humans. Trends Biochem Sci 32:217–224

    Article  CAS  PubMed  Google Scholar 

  92. Sato T, Kienlen-Campard P, Ahmed M, Liu W, Li HL, Elliott JI, Aimoto S, Constantinescu SN, Octave JN, Smith SO (2006) Inhibitors of amyloid toxicity based on beta-sheet packing of A beta 40 and A beta 42. Biochemistry 45:5503–5516

    Article  CAS  PubMed  Google Scholar 

  93. Blanchard BJ, Chen A, Rozeboom LM, Stafford KA, Weigele P, Ingram VM (2004) Efficient reversal of Alzheimer’s disease fibril formation and elimination of neurotoxicity by a small molecule. Proc Natl Acad Sci U S A 101:14326–14332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Heiser V, Scherzinger E, Boeddrich A, Nordhoff E, Lurz R, Schugardt N, Lehrach H, Wanker EE (2000) Inhibition of huntingtin fibrillogenesis by specific antibodies and small molecules: implications for Huntington’s disease therapy. Proc Natl Acad Sci U S A 97:6739–6744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mao XB, Guo YY, Wang CX, Zhang M, Ma XJ, Liu L, Niu L, Zeng QD, Yang YL, Wang C (2011) Binding modes of thioflavin t molecules to prion peptide assemblies identified by using scanning tunneling microscopy. ACS Chem Neurosci 2:281–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang CX, Mao XB, Yang AH, Niu L, Wang SN, Li DH, Guo YY, Wang YB, Yang YL, Wang C (2011) Determination of relative binding affinities of labeling molecules with amino acids by using scanning tunneling microscopy. Chem Commun 47:10638–10640

    Article  CAS  Google Scholar 

  97. Niu L, Ma XJ, Liu L, Mao XB, Wu DX, Yang YL, Zeng QD, Wang C (2010) Molecularly tuned peptide assemblies at the liquid-solid interface studied by scanning tunneling microscopy. Phys Chem Chem Phys 12:11683–11687

    Article  CAS  PubMed  Google Scholar 

  98. Guo YY, Hou JF, Zhang XM, Yang YL, Wang C (2017) Stabilization effect of amino acid side chains in peptide assemblies on graphite studied by scanning tunneling microscopy. Chemphyschem 18:1–10

    Article  CAS  Google Scholar 

  99. Liu L, Li YB, Xia D, Bortolini C, Zhang S, Yang YL, Pedersen JS, Wang C, Besenbacher F, Dong MD (2015) A self-assembled nanopatch with peptide-organic multilayers and mechanical properties. Nanoscale 7:2250–2254

    Article  CAS  PubMed  Google Scholar 

  100. Mao XB, Wang YB, Liu L, Niu L, Yang YL, Wang C (2009) Molecular-level evidence of the surface-induced transformation of peptide structures revealed by scanning tunneling microscopy. Langmuir 25:8849–8853

    Article  CAS  PubMed  Google Scholar 

  101. Xu M, Zhu L, Liu J, Yang Y, Wu JY, Wang C (2013) Characterization of beta-domains in C-terminal fragments of TDP-43 by scanning tunneling microscopy. J Struct Biol 181:11–16

    Article  CAS  PubMed  Google Scholar 

  102. Yang YL, Wang C (2009) Solvent effects on two-dimensional molecular self-assemblies investigated by using scanning tunneling microscopy. Curr Opin Colloid Interface Sci 14:135–147

    Article  CAS  Google Scholar 

  103. Latour RA, Rini CJ (2002) Theoretical analysis of adsorption thermodynamics for hydrophobic peptide residues on SAM surfaces of varying functionality. J Biomed Mater Res 60:564–577

    Article  CAS  PubMed  Google Scholar 

  104. Ostuni E, Grzybowski BA, Mrksich M, Roberts CS, Whitesides GM (2003) Adsorption of proteins to hydrophobic sites on mixed self-assembled monolayers. Langmuir 19:1861–1872

    Article  CAS  Google Scholar 

  105. Chakarova SD, Carlsson AE (2004) Model study of protein unfolding by interfaces. Phys Rev E 69:021907

    Article  CAS  Google Scholar 

  106. Sethuraman A, Vedantham G, Imoto T, Przybycien T, Belfort G (2004) Protein unfolding at interfaces: slow dynamics of alpha-helix to beta-sheet transition. Proteins 56:669–678

    Article  CAS  PubMed  Google Scholar 

  107. Jayawickrama D, Zink S, Vandervelde D, Effiong RI, Larive CK (1995) Conformational-analysis of the beta-amyloid peptide fragment, beta(12-28). J Biomol Struct Dyn 13:229–244

    Article  CAS  PubMed  Google Scholar 

  108. Mihara H, Takahashi Y, Ueno A (1998) Design of peptides undergoing self-catalytic alpha-to-beta transition and amyloidogenesis. Biopolymers 47:83–92

    Article  CAS  PubMed  Google Scholar 

  109. Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang ZW, Fletterick RJ, Cohen FE, Prusiner SB (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A 90:10962–10966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Peretz D, Williamson RA, Matsunaga Y, Serban H, Pinilla C, Bastidas RB, Rozenshteyn R, James TL, Houghten RA, Cohen FE, Prusiner SB, Burton DR (1997) A conformational transition at the N terminus of the prion protein features in formation of the scrapie isoform. J Mol Biol 273:614–622

    Article  CAS  PubMed  Google Scholar 

  111. Ou L, Luo Y, Wei G (2011) Atomic-level study of adsorption, conformational change, and dimerization of an alpha-helical peptide at graphene surface. J Phys Chem B 115:9813–9822

    Article  CAS  PubMed  Google Scholar 

  112. Zhang M, Mao XB, Wang CX, Zeng WF, Zhang CL, Li ZJ, Fang Y, Yang YL, Liang W, Wang C (2013) The effect of graphene oxide on conformation change, aggregation and cytotoxicity of HIV-1 regulatory protein (Vpr). Biomaterials 34:1383–1390

    Article  CAS  PubMed  Google Scholar 

  113. Lopes P, Xu M, Zhang M, Zhou T, Yang YL, Wang C, Ferapontova EE (2014) Direct electrochemical and AFM detection of amyloid-beta peptide aggregation on basal plane HOPG. Nanoscale 6:7853–7857

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (91127043, 21332006, 21273051) and the National Basic Research Program of China (2013CB934200) and the Chinese Academy of Sciences (XDA09030306, YZ201317). Financial support from the CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety and the Key Laboratory of Standardization and Measurement for Nanotechnology are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, L., Yang, Y., Wang, C. (2019). Peptide Self-Assembly and Its Modulation: Imaging on the Nanoscale. In: Perrett, S., Buell, A., Knowles, T. (eds) Biological and Bio-inspired Nanomaterials. Advances in Experimental Medicine and Biology, vol 1174. Springer, Singapore. https://doi.org/10.1007/978-981-13-9791-2_2

Download citation

Publish with us

Policies and ethics