Skip to main content

Improved Control Strategy of Virtual Synchronous Generator in Response to Power Grid Harmonics

  • Conference paper
  • First Online:
Proceedings of PURPLE MOUNTAIN FORUM 2019-International Forum on Smart Grid Protection and Control

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 585))

  • 925 Accesses

Abstract

By virtual synchronous generator (VSG) technology, the inverter can be controlled simulating the operation characteristics of synchronous generators and regarded as an access of renewable energy. The harmonics contained in the power grid brings the same order harmonics to the grid-connected current generated by VSG, result in an increasement of harmonic content in the power grid. In order to solve this problem, an improved VSG control strategy is proposed. Firstly, the equivalent model of VSG is established. Based on the analysis of the impact of harmonics on the grid-connected current generated by VSG, an improved algorithm for obtaining inductance current reference value based on double second-order generalized integral is proposed. Inertial integral link is used to replace differential operation in full feed-forward control for grid voltage, and the mechanism of current regulator is analyzed. The current tracking and harmonic suppression can be realized by choosing the corresponding current regulator. Finally, a simulation and experimental platform is built to verify the validity of the improved VSG control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azmy AM, Erlich I (2005) Impact of distributed generation on the stability of electrical power systems. In: IEEE Power Engineering Society General Meeting, vol 2, 16 June, pp 1056–1063

    Google Scholar 

  2. Tan WS, Hassan MY, Majid MS et al (2013) Optimal distributed renewable generation planning: a review of different approaches. Renew Sustain Energy Rev 18:626–645

    Article  Google Scholar 

  3. Zhong Q (2017) Virtual synchronous machines and autonomous power systems. Proc CSEE 37(2):336–348

    Google Scholar 

  4. van Wesenbeeck MPN, de Haan SWH, Varela P et al (2009) Grid tied converter with virtual kinetic storage. In: 2009 IEEE PowerTech. Bucharest, pp 1–7

    Google Scholar 

  5. Zheng T, Chen L, Chen T et al (2015) Review and prospect of virtual synchronous generator technologies. Autom Electr Power Syst 39(21):165–175

    Google Scholar 

  6. Beck HP, Hesse R (2007) Virtual synchronous machine. In: 2007 9th international conference on Electrical Power Quality and Utilisation, Barcelona, Spain, pp 1–6

    Google Scholar 

  7. Wu H, Ruan X, Yang D et al (2015) Modeling of the power loop and parameter design of virtual synchronous generators. Proc CSEE 35(24):6508–6518

    Google Scholar 

  8. Ding M, Yang X, Su J (2009) Control strategies of inverters based on virtual synchronous generator in a microgrid. Autom Electr Power Syst 33(8):89–93

    Google Scholar 

  9. Zhao Y, Chai J, Sun X (2016) Flexible virtual governor model based on virtual synchronous generator. Autom Electr Power Syst 40(10):8–15

    Google Scholar 

  10. Yang J, Liu Y, Pan H et al (2016) Method of frequent deviation-free control of microgrid inverter based on virtual synchronous generator control. Power Syst Technol 40(7):2001–2008

    Google Scholar 

  11. Lv Z, Sheng W, Liu H et al (2017) Application and challenge of virtual synchronous machine technology in power system. Proc CSEE 37(2):349–359

    Google Scholar 

  12. Song Q, Zhang H, Sun K et al (2017) Improved adaptive control of inertia for virtual synchronous generators in islanding micro-grid with multiple distributed generation units. Proc CSEE 37(2):412–423

    Google Scholar 

  13. Miguel A, Torres L, Luiz A et al (2014) Self-tuning virtual synchronous machines: a control strategy for energy storage systems to support dynamic frequency control. IEEE Trans Energy Convers 29(4):833–840

    Article  Google Scholar 

  14. Alipoor J, Miura Y, Ise T (2014) Power system stabilization using virtual synchronous generator with adoptive moment of inertia. IEEE J Emerg Sel Top Power Electron 3(2):451–458

    Article  Google Scholar 

  15. Cheng C, Yang H, Zen Z et al (2015) Rotor inertia adaptive control method of VSG. Autom Electr Power Syst 39(19):82–89

    Google Scholar 

  16. D’Arco S, Suul JA, Fosso OB (2015) A virtual synchronous machine implementation for distributed control of power converters in smartgrids. Electr Power Syst Res 122(6):180–197

    Article  Google Scholar 

  17. Wang S, Hu J, Yuan X (2015) Virtual synchronous control for grid-connected DFIG-based wind turbines. IEEE J Emerg Sel Top Power Electron 3(4):932–944

    Article  Google Scholar 

  18. Zhao Y, Chai J, Sun X (2015) Virtual synchronous control of grid-connected DFIG-based wind turbines. In: 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, pp 2980–2983

    Google Scholar 

  19. Lü Z, Sheng W, Zhong Q (2014) Virtual synchronous generator and its applications in micro-grid. Proc CSEE 34(16):2591–2603

    Google Scholar 

  20. Meng J, Wang Y, Shi X et al (2014) Control strategy and parameter analysis of distributed inverters based on VSG. Trans China Electrotechnical Soc 29(22):1–10

    Google Scholar 

  21. Shi R, Zhang X, Xu H et al (2017) The active and reactive power control of virtual synchronous generator based on adaptive mode switching. Trans China Electrotechnical Soc 32(12):127–137

    Google Scholar 

  22. IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems. IEEE Standard 929, 2000

    Google Scholar 

  23. IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems. IEEE Standard 1547, 2003

    Google Scholar 

  24. Generating Plants Connected the Medium-Voltage Network. BDEW technical guideline, 2008

    Google Scholar 

  25. Technical rule for distributed resources connected to power grid. State Grid Corporation Enterprise Standard Q/GDW480 2010

    Google Scholar 

  26. Technical rule for connecting photovoltaic power station to power grid. State Grid Corporation Enterprise Standard Q/GDW617 2011

    Google Scholar 

  27. Wang X, Ruan X, Liu S (2011) Control strategy for grid-connected inverter to suppress current distortion effected by background harmonics in grid voltage. Proc CSEE 31(6):7–14

    Google Scholar 

  28. Quan Y, Nian H (2014) Resonance-based sliding mode control of grid connected inverters under unbalanced and harmonic grid voltages. Proc CSEE 34(9):1345–1352

    Google Scholar 

  29. Wei Z, Wang J, Ru X et al (2016) Zero voltage ride-through control strategy of photovoltaic grid-connected inverter based on compensation for phase of feed-forward grid voltage. Autom Electr Power Syst 40(4):78–84

    Google Scholar 

  30. Huang Y, Luo A, Wang Y (2016) A flexible harmonic control method for three-phase grid-connected inverter without harmonic detection. Trans China Electrotechnical Soc 31(24):213–222

    Google Scholar 

  31. Shang L, Hu J, Yuan X et al (2017) Modeling and improved control of virtual synchronous generators under symmetrical faults of grid. Proc CSEE 37(2):403–411

    Google Scholar 

  32. Chen T, Chen L, Wang Y et al (2016) Balanced current control of virtual synchronous generator considering unbalanced grid voltage. Power Syst Technol 40(3):904–909

    Google Scholar 

  33. Wan X, Hu H, Nie X et al (2017) An improved control strategy for virtual synchronous generator under unbalanced grid voltage. Power Syst Technol 41(11):3573–3581

    Google Scholar 

  34. Tianwen Z, Laijun C, Yan G et al (2017) Comprehensive control strategy of virtual synchronous generator under unbalanced voltage conditions. IET Gener Transm Distrib:1621–1629

    Google Scholar 

  35. Geng Y, Tian F, Sun S et al (2018) A method of current harmonics suppression based on VSG. Trans China Electrotechnical Soc 33(5):1040–1050

    Google Scholar 

  36. Chen J, Shen P, Wei T et al (2018) Control scheme for synchronverters under non-ideal grid condition. Autom Electr Power Syst 9(42):127–133

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Han, L., Chen, K. (2020). Improved Control Strategy of Virtual Synchronous Generator in Response to Power Grid Harmonics. In: Xue, Y., Zheng, Y., Rahman, S. (eds) Proceedings of PURPLE MOUNTAIN FORUM 2019-International Forum on Smart Grid Protection and Control. Lecture Notes in Electrical Engineering, vol 585. Springer, Singapore. https://doi.org/10.1007/978-981-13-9783-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9783-7_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9782-0

  • Online ISBN: 978-981-13-9783-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics