Advertisement

Evaluating PSO and MOPSO Equipped with Evolutionary Population Dynamics

  • Shahrzad SaremiEmail author
  • Seyedali Mirjalili
Chapter
Part of the Algorithms for Intelligent Systems book series (AIS)

Abstract

This section presents, discusses and analyses the results of the proposed improved PSO and MOPSO. A variety of test functions with different characteristics and difficulties are employed to efficiently benchmark the performance of the proposed PSO\(+\)EPD and MOPSO\(+\)EPD algorithms. The results are collected and presented quantitatively and qualitatively.

References

  1. 1.
    Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3(2):82–102CrossRefGoogle Scholar
  2. 2.
    Digalakis JG, Margaritis KG (2001) On benchmarking functions for genetic algorithms. Int J Comput Math 77(4):481–506MathSciNetCrossRefGoogle Scholar
  3. 3.
    Molga M, Smutnicki C (2005) Test functions for optimization needs. Test functions for optimization needsGoogle Scholar
  4. 4.
    Yang X-S (2010) Appendix a: test problems in optimization. Eng Optim 261–266Google Scholar
  5. 5.
    Mirjalili S, Lewis A (2013) S-shaped versus v-shaped transfer functions for binary particle swarm optimization. Swarm Evol Comput 9:1–14CrossRefGoogle Scholar
  6. 6.
    Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y-P, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the cec, (2005) special session on real-parameter optimization. KanGAL Report 2005005(2005):2005Google Scholar
  7. 7.
    Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195CrossRefGoogle Scholar
  8. 8.
    Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073CrossRefGoogle Scholar
  9. 9.
    Brockhoff D, Friedrich T, Hebbinghaus N, Klein C, Neumann F, Zitzler E (2007) Do additional objectives make a problem harder? In: Proceedings of the 9th annual conference on Genetic and evolutionary computation. ACM, pp 765–772Google Scholar
  10. 10.
    Brockhoff D, Friedrich T, Hebbinghaus N, Klein C, Neumann F, Zitzler E (2009) On the effects of adding objectives to plateau functions. IEEE Trans Evol Comput 13(3):591–603CrossRefGoogle Scholar
  11. 11.
    Sierra MR, Coello CAC (2005) Improving pso-based multi-objective optimization using crowding, mutation and–dominance. In: International conference on evolutionary multi-criterion optimization. Springer, pp 505–519Google Scholar
  12. 12.
    Zhang Q, Zhou A, Zhao S, Suganthan PN, Liu W, Tiwari S (2008) Multiobjective optimization test instances for the cec, (2009) special session and competition. University of Essex, Colchester, UK and Nanyang technological University, Singapore, special session on performance assessment of multi-objective optimization algorithms, technical report, vol. 264Google Scholar
  13. 13.
    Zhang Q, Li H (2007) Moea/d: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731CrossRefGoogle Scholar
  14. 14.
    Schott JR (1995) Fault tolerant design using single and multicriteria genetic algorithm optimization. Technical report, Air Force Inst of Tech Wright-Patterson AFB OHGoogle Scholar
  15. 15.
    Tan KC, Lee TH, Khor EF (2002) Evolutionary algorithms for multi-objective optimization: performance assessments and comparisons. Artif Intell Rev 17(4):251–290Google Scholar
  16. 16.
    Yen GG, He Z (2014) Performance metric ensemble for multiobjective evolutionary algorithms. IEEE Trans Evol Comput 18(1):131–144CrossRefGoogle Scholar
  17. 17.
    Qi Y, Ma X, Liu F, Jiao L, Sun J, Jianshe W (2014) Moea/d with adaptive weight adjustment. Evol Comput 22(2):231–264CrossRefGoogle Scholar
  18. 18.
    Tan Y-Y, Jiao Y-C, Li H, Wang X-K (2012) A modification to moea/d-de for multiobjective optimization problems with complicated pareto sets. Inf Sci 213:14–38MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Torrens University AustraliaFortitude Valley, BrisbaneAustralia

Personalised recommendations