A Survey of Hand Posture Estimation Techniques and Optimisation Algorithms

  • Shahrzad SaremiEmail author
  • Seyedali Mirjalili
Part of the Algorithms for Intelligent Systems book series (AIS)


This chapter reviews a wide range of relevant works in the literature of two fields: hand posture estimation and evolutionary stochastic optimisation. Since this book contributes to the field of hand posture estimation, this chapter analyses the literature of hand posture estimation and highlights the gaps as well. The logical order of sections is illustrated in Fig. 2.1.


  1. 1.
    Kevin NYY, Ranganath S, Ghosh D (2004) Trajectory modeling in gesture recognition using cybergloves/sup/spl reg//and magnetic trackers. In: 2004 IEEE region 10 conference TENCON 2004. IEEE, pp 571–574Google Scholar
  2. 2.
    Malik S, Laszlo J (2004) Visual touchpad: a two-handed gestural input device. In: Proceedings of the 6th international conference on multimodal interfaces. ACM, pp 289–296Google Scholar
  3. 3.
    Wilson AD (2004) Touchlight: an imaging touch screen and display for gesture-based interaction. In: Proceedings of the 6th international conference on Multimodal interfaces. ACM, pp 69–76Google Scholar
  4. 4.
    Li Y (2012) Hand gesture recognition using kinect. In 2012 IEEE 3rd International conference on software engineering and service science (ICSESS). IEEE, pp 196–199Google Scholar
  5. 5.
    Ren Z, Yuan J, Meng J, Zhang Z (2013) Robust part-based hand gesture recognition using kinect sensor. IEEE Trans Multimed 15(5):1110–1120CrossRefGoogle Scholar
  6. 6.
    Coogan T, Awad G, Han J, Sutherland A (2006) Real time hand gesture recognition including hand segmentation and tracking. In: International symposium on visual computing. Springer, pp 495–504Google Scholar
  7. 7.
    Singhai S, Satsangi C (2014) Hand segmentation for hand gesture recognition. In: Workshop on interactive multimedia on mobile & portable devices, vol 1, pp 48–52Google Scholar
  8. 8.
    Lee J, Kunii TL (1995) Model-based analysis of hand posture. IEEE Comput Graph Appl 15(5):77–86Google Scholar
  9. 9.
    Bourke AK, Obrien JV, Lyons GM (2007) Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait & Posture 26(2):194–199CrossRefGoogle Scholar
  10. 10.
    Erol A, Bebis G, Nicolescu M, Boyle RD, Twombly, X (2007) Vision-based hand pose estimation: a review. Comput Vis Image Underst 108(1):52–73CrossRefGoogle Scholar
  11. 11.
    Barsoum E (2016) Articulated hand pose estimation review. arXiv:1604.06195
  12. 12.
    Darrell T J, Essa IA, Pentland AP (1996) Task-specific gesture analysis in real-time using interpolated views. IEEE Trans Pattern Anal Mach Intell 18(12):1236–1242CrossRefGoogle Scholar
  13. 13.
    Isard M, Blake A (1998) Condensationconditional density propagation for visual tracking. Int J Comput Vis 29(1):5–28CrossRefGoogle Scholar
  14. 14.
    Argyros AA, Lourakis MI (2006) Binocular hand tracking and reconstruction based on 2d shape matching. In: 2006 18th international conference on pattern recognition ICPR, vol 1, pp 207–210. IEEEGoogle Scholar
  15. 15.
    Taylor J, Bordeaux L, Cashman T, Corish B, Keskin C, Sharp T, Soto E, Sweeney D, Valentin J, Luff B, et al (2016) Efficient and precise interactive hand tracking through joint, continuous optimization of pose and correspondences. ACM Trans Graph (TOG) 35(4):143CrossRefGoogle Scholar
  16. 16.
    Rehg JM, Kanade T (1994) Visual tracking of high dof articulated structures: an application to human hand tracking. In: European conference on computer vision. Springer, pp 35–46Google Scholar
  17. 17.
    Heap T, Hogg D (1996) Towards 3d hand tracking using a deformable model. In: Proceedings of the second international conference on automatic face and gesture recognition. IEEE, pp 140–145Google Scholar
  18. 18.
    Pham A (2009) E3: Microsoft shows off gesture control technology for xbox 360. Los Angeles Times, 1Google Scholar
  19. 19.
    Shotton J, Sharp T, Kipman A, Fitzgibbon A, Finocchio M, Blake A, Cook M, Moore R (2013) Real-time human pose recognition in parts from single depth images. Commun ACM 56(1):116–124CrossRefGoogle Scholar
  20. 20.
    Coscia P, Palmieri FA, Castaldo F, Cavallo A (2016) 3-d hand pose estimation from kinects point cloud using appearance matching. In: Advances in neural networks. Springer, pp 37–45Google Scholar
  21. 21.
    Ballan L, Taneja A, Gall J, Van Gool L, Pollefeys M (2012) Motion capture of hands in action using discriminative salient points. In: European conference on computer vision. Springer, pp 640–653Google Scholar
  22. 22.
    de La Gorce M, Fleet DJ, Paragios N (2011) Model-based 3d hand pose estimation from monocular video. IEEE Trans Pattern Anal Mach Intell, 33(9):1793–1805, 2011Google Scholar
  23. 23.
    Oikonomidis I, Kyriazis N, Argyros AA (2011) Efficient model-based 3d tracking of hand articulations using kinect. In: BMVC, vol 1, p 3Google Scholar
  24. 24.
    Shi Y et al (2001) Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 Congress on evolutionary computation, vol 1. IEEE, pp 81–86Google Scholar
  25. 25.
    Qian C, Sun X, Wei Y, Tang X, Sun J (2014) Realtime and robust hand tracking from depth. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1106–1113Google Scholar
  26. 26.
    Tkach A, Pauly M, Tagliasacchi A (2016) Sphere-meshes for real-time hand modeling and tracking. ACM Trans Graph (TOG) 35(6):222CrossRefGoogle Scholar
  27. 27.
    Tagliasacchi A, Schröder M, Tkach A, Bouaziz S, Botsch M, Pauly, M (2015) Robust articulated-icp for real-time hand tracking. In computer graphics forum, vol 34. Wiley Online Library, pp 101–114Google Scholar
  28. 28.
    Holub AD, Welling M, Perona P (2008) Hybrid generative-discriminative visual categorization. Int J Comput Vis 77(1):239–258CrossRefGoogle Scholar
  29. 29.
    Sharp T, Keskin C, Robertson D, Taylor J, Shotton J, Kim D, Rhemann C, Leichter I, Vinnikov A, Wei Y et al (2015) Accurate, robust, and flexible real-time hand tracking. In: Proceedings of the 33rd Annual ACM conference on human factors in computing systems. ACM, pp 3633–3642Google Scholar
  30. 30.
    Krejov P, Gilbert A, Bowden R (2015) Combining discriminative and model based approaches for hand pose estimation. In: 2015 11th IEEE international conference and workshops on automatic face and gesture recognition (FG), vol 1. IEEE, pp 1–7Google Scholar
  31. 31.
    Sridhar S, Mueller F, Oulasvirta A, Theobalt C (2015) Fast and robust hand tracking using detection-guided optimization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3213–3221Google Scholar
  32. 32.
    Zhou X, Wan Q, Zhang W, Xue X, Wei Y (2016) Model-based deep hand pose estimation. arXiv:1606.06854
  33. 33.
    Oberweger M, Wohlhart P, Lepetit V (2015) Training a feedback loop for hand pose estimation. In: Proceedings of the IEEE international conference on computer vision, pp 3316–3324Google Scholar
  34. 34.
    Zimmermann C, Brox T (2017) Learning to estimate 3d hand pose from single rgb images. In: International conference on computer visionGoogle Scholar
  35. 35.
    Oberweger M, Wohlhart P, Lepetit V (2015) Hands deep in deep learning for hand pose estimation. arXiv:1502.06807
  36. 36.
    Athitsos V, Sclaroff S (2003) Estimating 3d hand pose from a cluttered image. In Proceedings 2003 IEEE computer society conference on computer vision and pattern recognition, vol 2. IEEE, ppD II–432Google Scholar
  37. 37.
    Yuan S, Garcia-Hernando G, Stenger B, Moon G, Yong Chang J, Mu Lee K, Molchanov P, Kautz J, Honari S, Ge L et al (2017) 3d hand pose estimation: From current achievements to future goals. arXiv:1712.03917
  38. 38.
    Wang R, Zhou K, Snyder J, Liu X, Bao H, Peng Q, Guo B (2006) Variational sphere set approximation for solid objects. Vis Comput 22(9–11):612–621CrossRefGoogle Scholar
  39. 39.
    Taylor J, Stebbing R, Ramakrishna V, Keskin C, Shotton J, Izadi S, Hertzmann A, Fitzgibbon A (2014) User-specific hand modeling from monocular depth sequences. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 644–651Google Scholar
  40. 40.
    Oikonomidis I, Kyriazis N, Argyros AA (2010) Markerless and efficient 26-dof hand pose recovery. In: Asian conference on computer vision. Springer, pp 744–757Google Scholar
  41. 41.
    Oikonomidis I, Kyriazis N, Argyros AA (2012) Tracking the articulated motion of two strongly interacting hands. In: 2012 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 1862–1869Google Scholar
  42. 42.
    Makris A, Argyros A (2015) Model-based 3d hand tracking with on-line hand shape adaptation. In: Proceedings of BMVC, pp 77–1Google Scholar
  43. 43.
    Melax S, Keselman L, Orsten S (2013) Dynamics based 3d skeletal hand tracking. In: Proceedings of graphics interface 2013. Canadian Information Processing Society, pp 63–70Google Scholar
  44. 44.
    Sridhar S, Oulasvirta A, Theobalt C (2013) Interactive markerless articulated hand motion tracking using rgb and depth data. In: Proceedings of the IEEE international conference on computer vision, pp 2456–2463Google Scholar
  45. 45.
    Khamis S, Taylor J, Shotton J, Keskin C, Izadi S, Fitzgibbon A (2015) Learning an efficient model of hand shape variation from depth images. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2540–2548Google Scholar
  46. 46.
    Joseph Tan D, Cashman T, Taylor J, Fitzgibbon A, Tarlow D, Khamis S, Izadi S, Shotton J (2016) Fits like a glove: Rapid and reliable hand shape personalization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5610–5619Google Scholar
  47. 47.
    Helten T, Baak A, Bharaj G, Müller M, Seidel HP, Theobalt C (2013) Personalization and evaluation of a real-time depth-based full body tracker. In: 2013 international conference on 3D vision-3DV 2013. IEEE, pp 279–286Google Scholar
  48. 48.
    Makris A, Argyros A (September 2015) Model-based 3d hand tracking with on-line shape adaptation. In: Jones MW, Xie MX, Tam GK (eds) Proceedings of the british machine vision conference (BMVC). BMVA Press, pages 77.1–77.12Google Scholar
  49. 49.
    Tompson J, Stein M, Lecun Y, Perlin K (2014) Real-time continuous pose recovery of human hands using convolutional networks. ACM Trans Graph (ToG) 33(5):169CrossRefGoogle Scholar
  50. 50.
    Kennedy, J (2010) Particle swarm optimization. In: Encyclopedia of machine learning. Springer, pp 760–766Google Scholar
  51. 51.
    Banks A, Vincent J, Anyakoha C (2007) A review of particle swarm optimization. Part I: background and development. Nat Comput 6(4):467–484MathSciNetCrossRefGoogle Scholar
  52. 52.
    Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279CrossRefGoogle Scholar
  53. 53.
    Reyes-Sierra M, Coello CC (2006) Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int J Comput Intell Res 2(3):287–308Google Scholar
  54. 54.
    Ouhaddi H, Horain P (1999) 3d hand gesture tracking by model registration. In: workshop on synthetic-natural hybrid coding and three dimensional imaging, pp 70–73Google Scholar
  55. 55.
    Ueda E, Matsumoto Y, Imai M, Ogasawara T (2003) A hand-pose estimation for vision-based human interfaces. IEEE Trans Ind Electron 50(4):676–684CrossRefGoogle Scholar
  56. 56.
    Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82, 1997CrossRefGoogle Scholar
  57. 57.
    Deb K, Srinivasan A (2006) Innovization: innovating design principles through optimization. In: Proceedings of the 8th annual conference on Genetic and evolutionary computation. ACM, pp 1629–1636Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Torrens University AustraliaFortitude Valley, BrisbaneAustralia

Personalised recommendations