Skip to main content

Fully Coherent Schrodinger Cat State Spectroscopy and the Future of CMDS

  • Chapter
  • First Online:
Coherent Multidimensional Spectroscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 226))

Abstract

Spectroscopy is one of the most powerful techniques in all of science and technology because of its ability to directly access the individual quantum states of matter and measure their dynamics. Frequency domain methodologies are used extensively to acquire spectra over wide ranges of wavelengths for identifying a system’s quantum states. Often, the spectra become spectroscopic fingerprints of individual molecular species. Time domain methodologies have long been used to measure quantum state dynamics on time scales ranging from many seconds to attoseconds. These ultrafast methods typically create one dimensional (1D) spectra and become compromised in studying complex samples where the presence of multiple species creates spectral congestion. This chapter explores the tradeoffs between time and frequency domain methods, pulse width and sensitivity, and the ability to create multidimensional spectral fingerprints that are essential for studying complex materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The exception is coherent transfer where the environment causes a coherent evolution of a state without randomization of the quantum mechanical phase.

References

  1. J.C. Wright, Analytical chemistry, multidimensional spectral signatures, and the future of coherent multidimensional spectroscopy. Chem. Phys. Lett. 662, 1–13 (2016)

    Article  ADS  Google Scholar 

  2. J.C. Wright, Applications of the new family of coherent multidimensional spectroscopies for analytical chemistry. Annu. Rev. Anal. Chem. 10, 45–70 (2017)

    Article  Google Scholar 

  3. J.C. Wright, Multiresonant coherent multidimensional spectroscopy (ed. by S.R. Leone, P.S. Cremer, J.T. Groves, M.A. Johnson) Ann. Rev. Phys. Chem. 62, 209–230 (2011)

    Google Scholar 

  4. J.C. Wright, Coherent multidimensional vibrational spectroscopy. Int. Rev. Phys. Chem. 21, 185–255 (2002)

    Article  Google Scholar 

  5. J.C. Wright, R.J. Carlson, G.B. Hurst, J.K. Steehler, M.T. Riebe, B.B. Price, D.C. Nguyen, S.H. Lee, Molecular, multiresonant coherent four wave mixing spectroscopy. Int. Rev. Phys. Chem. 10, 349–390 (1991)

    Article  Google Scholar 

  6. D.M. Jonas, Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54, 425–463 (2003)

    Article  ADS  Google Scholar 

  7. M. Cho, Two Dimensional Optical Spectroscopy, 1st edn. (CRC Press, Boca Raton, 2009)

    Book  Google Scholar 

  8. M. Cho, Coherent two-dimensional optical spectroscopy. Chem. Rev. 108, 1331–1418 (2008)

    Article  Google Scholar 

  9. M. Cho, Two dimensional vibrational spectroscopy, in Advances in Multi-Photon Processes and Spectroscopy, S.H. Lin, A.A. Villaeys, Y. Fujimura, vol. 12, 1st edn. (World Scientific, Singapore, 1999), pp 1–72

    Google Scholar 

  10. S. Mukamel, Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations. Annu. Rev. Phys. Chem. 51, 691–729 (2000)

    Article  ADS  Google Scholar 

  11. S. Mukamel, Principles of Nonlinear Optical Spectroscopy, 1st edn. (Oxford University Press, New York, 1995)

    Google Scholar 

  12. W. Zhao, J.C. Wright, Spectral simplification in vibrational spectroscopy using doubly resonant infrared four wave mixing. J. Am. Chem. Soc. 121, 10994–10998 (1999)

    Article  Google Scholar 

  13. W. Zhao, J.C. Wright, Measurement of chi(3) for doubly vibrationally enhanced four wave mixing spectroscopy. Phys. Rev. Lett. 83, 1950–1953 (1999)

    Article  ADS  Google Scholar 

  14. R.J. Carlson, J.C. Wright, Enhanced selectivity by mode selection with four wave mixing. Anal. Chem. 63, 1449–1451 (1991)

    Article  Google Scholar 

  15. R.J. Carlson, J.C. Wright, Analysis of vibrational correlations and couplings in the lowest two singlet states of pentacene by fully resonant four wave mixing. J. Chem. Phys. 92, 5186–5195 (1990)

    Article  ADS  Google Scholar 

  16. A.V. Pakoulev, M.A. Rickard, K.A. Meyers, K. Kornau, N.A. Mathew, D.C. Thompson, J.C. Wright, Mixed frequency/time domain optical analogues of heteronuclear multidimensional NMR. J. Phys. Chem. A 110, 3352–3355 (2006)

    Article  Google Scholar 

  17. T. Brixner, J. Stenger, H.M. Vaswani, M. Cho, R.E. Blankenship, G.R. Fleming, Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005)

    Article  ADS  Google Scholar 

  18. M.H. Cho, T. Brixner, I. Stiopkin, H. Vaswani, G.R. Fleming, Two dimensional electronic spectroscopy of molecular complexes. J. Chin. Chem. Soc. 53, 15–24 (2006)

    Article  Google Scholar 

  19. D.V. Kurochkin, S.R.G. Naraharisetty, I.V. Rubtsov, Dual-frequency 2D IR on interaction of weak and strong IR modes. J. Phys. Chem. A 109, 10799–10802 (2005)

    Article  Google Scholar 

  20. I.V. Rubtsov, J.P. Wang, R.M. Hochstrasser, Dual-frequency 2D-IR spectroscopy heterodyned photon echo of the peptide bond. Proc. Natl. Acad. Sci. USA 100, 5601–5606 (2003)

    Article  ADS  Google Scholar 

  21. I.V. Rubtsov, J. Wang, R.M. Hochstrasser, Dual frequency 2D-IR of peptide amide-A and amide-I modes. J. Chem. Phys. 118, 7733–7736 (2003)

    Article  ADS  Google Scholar 

  22. N.H.C. Lewis, G.R. Fleming, Two-dimensional electronic-vibrational spectroscopy of chlorophyll a and b. J. Phys. Chem. Lett. 7, 831–837 (2016)

    Article  Google Scholar 

  23. E. Harel, A.F. Fidler, G.S. Engel, Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy. Proc. Natl. Acad. Sci. USA 107, 16444–16447 (2010)

    Article  ADS  Google Scholar 

  24. S.H. Lee, J.K. Steehler, D.C. Nguyen, J.C. Wright, Site selective nonlinear four wave mixing by MENS and MEPS. Appl. Spectrosc. 39, 243–253 (1985)

    Article  ADS  Google Scholar 

  25. J.K. Steehler, J.C. Wright, Parametric and non-parametric four wave mixing in pentacene:p-terphenyl. J. Chem. Phys. 83, 3200–3208 (1985)

    Article  ADS  Google Scholar 

  26. M.T. Riebe, J.C. Wright, Nonlinear line narrowing spectroscopy in mixed organic crystals. Chem. Phys. Lett. 138, 565–570 (1987)

    Article  ADS  Google Scholar 

  27. M.T. Riebe, J.C. Wright, Spectral line narrowing and saturation effects in fully resonant nondegenerate four wave mixing. J. Chem. Phys. 88, 2981–2994 (1988)

    Article  ADS  Google Scholar 

  28. R.J. Carlson, D.C. Nguyen, J.C. Wright, Analysis of vibronic mode coupling in pentacene by fully resonant four wave mixing. J. Chem. Phys. 92, 1538–1546 (1990)

    Article  ADS  Google Scholar 

  29. W. Zhao, J.C. Wright, Doubly vibrationally enhanced four wave mixing spectroscopy- the optical analogue to 2D NMR. Phys. Rev. Lett. 84, 1411–1414 (2000)

    Article  ADS  Google Scholar 

  30. A.V. Pakoulev, M.A. Rickard, K.M. Kornau, N.A. Mathew, L.A. Yurs, S.B. Block, J.C. Wright, Mixed Frequency-/time-domain coherent multidimensional spectroscopy: research tool or potential analytical method? Acc. Chem. Res. 42, 1310–1321 (2009)

    Article  Google Scholar 

  31. L.A. Yurs, S.B. Block, A.V. Pakoulev, R.S. Selinsky, S. Jin, J.C. Wright, Multiresonant coherent multidimensional electronic spectroscopy of colloidal PbSe quantum dots. J. Phys. Chem. C 115, 22833–22844 (2011)

    Article  Google Scholar 

  32. K.J. Czech, B.J. Thompson, S. Kain, Q. Ding, M.J. Shearer, R.J. Hamers, S. Jin, J.C. Wright, Measurement of ultrafast excitonic dynamics of few-layer MoS2 using state-selective coherent multidimensional spectroscopy. ACS Nano 9, 12146–12157 (2015)

    Article  Google Scholar 

  33. E. Schrodinger, The current situation in quantum mechanics. Naturwissenschaften 23, 807–812 (1935)

    Article  ADS  Google Scholar 

  34. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  35. Y. Shih, Entangled biphoton source-property and preparation. Rep. Prog. Phys. 66, 1009–1044 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  36. J.D. Handali, K.F. Sunden, B.J. Thompson, N.A. Neff-Mallon, E.M. Kaufman, T.C. Brunold, J.C. Wright, Three dimensional triply resonant sum frequency spectroscopy revealing vibronic coupling in cobalamins: toward a probe of reaction coordinates. J. Phys. Chem. A 122, 9031–9042 (2018)

    Article  ADS  Google Scholar 

  37. D. Lee, A.C. Albrecht, Advances in Infrared and Raman Spectroscopy, vol. 12, 1st edn. (Wiley-Heyden, Chichester, 1985)

    Google Scholar 

  38. S.T. Roberts, J.J. Loparo, A. Tokmakoff, Characterization of spectral diffusion from two-dimensional line shapes. J. Chem. Phys. 125, 8 (2006)

    Article  Google Scholar 

  39. N.I. Rubtsova, I.V. Rubtsov, Vibrational energy transport in molecules studied by relaxation-assisted two-dimensional infrared spectroscopy. Annu. Rev. Phys. Chem. 66, 717–738 (2015)

    Article  ADS  Google Scholar 

  40. D.V. Kurochkin, S.R.G. Naraharisetty, I.V. Rubtsov, A relaxation-assisted 2D IR spectroscopy method. Proc. Natl. Acad. Sci. USA 104, 14209–14214 (2007)

    Article  ADS  Google Scholar 

  41. A.V. Pakoulev, M.A. Rickard, N.A. Mathew, K.M. Kornau, J.C. Wright, Frequency-domain time-resolved four wave mixing spectroscopy of vibrational coherence transfer with single-color excitation. J. Phys. Chem. A 112, 6320–6329 (2008)

    Article  Google Scholar 

  42. M.A. Rickard, A.V. Pakoulev, N.A. Mathew, K.M. Kornau, J.C. Wright, Frequency- and time-resolved coherence transfer spectroscopy. J. Phys. Chem. A 111, 1163–1166 (2007)

    Article  Google Scholar 

  43. M.A. Rickard, A.V. Pakoulev, K. Kornau, N.A. Mathew, J.C. Wright, Interferometric coherence transfer modulations in triply vibrationally enhanced four-wave mixing. J. Phys. Chem. A 110, 11384–11387 (2006)

    Article  Google Scholar 

  44. G.S. Engel, T.R. Calhoun, E.L. Read, T.K. Ahn, T. Mancal, Y.C. Cheng, R.E. Blankenship, G.R. Fleming, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007)

    Article  ADS  Google Scholar 

  45. E. Harel, G.S. Engel, Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2). Proc. Natl. Acad. Sci. USA 109, 706–711 (2012)

    Article  ADS  Google Scholar 

  46. A.W. Chin, J. Prior, R. Rosenbach, F. Caycedo-Soler, S.F. Huelga, M.B. Plenio, The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nat. Phys. 9, 113–118 (2013)

    Article  Google Scholar 

  47. N. Christensson, H.F. Kauffmann, T. Pullerits, T. Mancal, Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116, 7449–7454 (2012)

    Article  Google Scholar 

  48. K. Kwak, S. Cha, M.H. Cho, J.C. Wright, Vibrational interactions of acetonitrile: Doubly vibrationally resonant IR-IR-visible four-wave-mixing spectroscopy. J. Chem. Phys. 117, 5675–5687 (2002)

    Article  ADS  Google Scholar 

  49. M. Spexard, D. Immeln, C. Thöing, T. Kottke, Infrared spectrum and absorption coefficient of the cofactor flavin in water. Vib. Spectrosc. 57, 282–287 (2011)

    Article  Google Scholar 

  50. K.M. Murdoch, N.J. Condon, W. Zhao, D.M. Besemann, K.A. Meyer, J.C. Wright, Isotope and mode selectivity in two dimensional vibrational four wave mixing spectroscopy. Chem. Phys. Lett. 335, 349 (2001)

    Article  ADS  Google Scholar 

  51. N.A. Mathew, S.B. Block, L.A. Yurs, K.M. Kornau, A.V. Pakoulev, J.C. Wright, Multiply enhanced odd-order wave mixing spectroscopy. J. Phys. Chem. A 113, 13562–13569 (2009)

    Article  Google Scholar 

  52. N.A. Mathew, L.A. Yurs, S.B. Block, A.V. Pakoulev, K.M. Kornau, J.C. Wright, Multiple quantum coherence spectroscopy. J. Phys. Chem. A 113, 9261–9265 (2009)

    Article  Google Scholar 

  53. N.A. Mathew, L.A. Yurs, S.B. Block, A.V. Pakoulev, K.M. Kornau, E.L. Sibert, J.C. Wright, Fully and partially coherent pathways in multiply enhanced odd-order wave-mixing spectroscopy. J. Phys. Chem. A 114, 817–832 (2010)

    Article  Google Scholar 

  54. S. Kain, Transition of frequency domain coherent multidimensional spectroscopy to the femtosecond time regime with application to nanoscale semiconductors. University of Wisconsin-Madison (2018)

    Google Scholar 

  55. P.C. Chen, High resolution coherent 2D spectroscopy. J. Phys. Chem. A 114, 11365–11375 (2010)

    Article  Google Scholar 

  56. B.R. Strangfeld, T.A. Wells, P.C. Chen, Rotational and vibrational pattern interpretation for high-resolution coherent 3D spectroscopy. J. Phys. Chem. A 118, 6846–6857 (2014)

    Article  Google Scholar 

  57. T.A. Wells, A.K. Muthike, J.E. Robinson, P.C. Chen, High resolution coherent three dimensional spectroscopy of NO2. J. Chem. Phys. 142, 11 (2015)

    Article  Google Scholar 

  58. S. Backus, C.G. Durfee, M.M. Murnane, H.C. Kapteyn, High power ultrafast lasers. Rev. Sci. Instrum. 69, 1207–1223 (1998)

    Article  ADS  Google Scholar 

  59. D.D. Kohler, B.J. Thompson, J.C. Wright, Frequency-domain coherent multidimensional spectroscopy when dephasing rivals pulsewidth: disentangling material and instrument response. J. Chem. Phys. 147, 17 (2017)

    Article  Google Scholar 

  60. C.A. Walsh, M. Berg, L.R. Narasimhan, M.D. Fayer, Optical dephasing of chromophores in an organic glass - picosecond photon-echo and hole burning experiments. Chem. Phys. Lett. 130, 6–11 (1986)

    Article  ADS  Google Scholar 

  61. T.J. Aartsma, D.A. Wiersma, Photon-echo spectroscopy of organic mixed crystals. Phys. Rev. Lett. 36, 1360–1362 (1976)

    Article  ADS  Google Scholar 

  62. R.G. Brewer, R.L. Shoemaker, Photon echo and optical nutation in molecules. Phys. Rev. Lett. 27, 631–634 (1971)

    Article  ADS  Google Scholar 

  63. M. Khalil, N. Demirdoven, A. Tokmakoff, Vibrational coherence transfer characterized with Fourier-transform 2D IR spectroscopy. J. Chem. Phys. 121, 362–373 (2004)

    Article  ADS  Google Scholar 

  64. Dijkstra, A. G.; Tanimura, Y. Non-Markovian Entanglement Dynamics in the Presence of System-Bath Coherence. Phys Rev Lett 2010, 104

    Google Scholar 

  65. P. Rebentrost, R. Chakraborty, A. Aspuru-Guzik, Non-Markovian quantum jumps in excitonic energy transfer. J. Chem. Phys. 131, 184102 (2009)

    Article  ADS  Google Scholar 

  66. A. Ishizaki, Y. Tanimura, Nonperturbative non-Markovian quantum master equation: validity and limitation to calculate nonlinear response functions. Chem. Phys. 347, 185–193 (2008)

    Article  Google Scholar 

  67. N. Shibata, H. Tamagaki, N. Hieda, K. Akita, H. Komori, Y. Shomura, S. Terawaki, K. Mori, N. Yasuoka, Y. Higuchi, T. Toraya, Crystal structures of ethanolamine ammonia-lyase complexed with coenzyme B-12 analogs and substrates. J. Biol. Chem. 285, 26484–26493 (2010)

    Article  Google Scholar 

  68. M. Fukuoka, Y. Nakanishi, R.B. Hannak, B. Krautler, T. Toraya, Homoadenosylcobalamins as probes for exploring the active sites of coenzyme B12-dependent diol dehydratase and ethanolamine ammonia-lyase. FEBS J. 272, 4787–4796 (2005)

    Article  Google Scholar 

  69. P.M. Kozlowski, T. Kamachi, M. Kumar, T. Nakayama, K. Yoshizawa, Theoretical analysis of the diradical nature of adenosylcobalamin cofactor-tyrosine complex in B-12-dependent mutases: inspiring PCET-driven enzymatic catalysis. J. Phys. Chem. B 114, 5928–5939 (2010)

    Article  Google Scholar 

  70. E.N.G. Marsh, G.D.R. Meléndez, Adenosylcobalamin enzymes: theory and experiment begin to converge. Biochim. Biophys. Acta 1824, 1154–1164 (2012)

    Article  Google Scholar 

  71. E.N.G. Marsh, D.P. Patterson, L. Li, Adenosyl radical: reagent and catalyst in enzyme reactions. ChemBioChem 11, 604–621 (2010)

    Article  Google Scholar 

  72. R.J. Sension, D.A. Harris, A. Stickrath, A.G. Cole, C.C. Fox, E.N.G. March, Time-resolved measurements of the photolysis and recombination of adenosylcobalamin bound to glutamate mutase. J. Phys. Chem. B 109, 18146–18152 (2005)

    Article  Google Scholar 

  73. N. Shibata, J. Masuda, Y. Morimoto, N. Yasuoka, T. Toraya, Substrate-induced conformational change of a coenzyme B12-dependent enzyme-crystal structure of the substrate-free form of diol dehydratase. Biochem.-Us 41, 12607–12617 (2001)

    Article  Google Scholar 

  74. T.A. Stich, A.J. Brooks, N.R. Buan, T.C. Brunold, Spectroscopic and computational studies of Co3 + -corrinoids: spectral and electronic properties of the B-12 cofactors and biologically relevant precursors. J. Am. Chem. Soc. 125, 5897–5914 (2003)

    Article  Google Scholar 

  75. B.D. Garabato, P. Lodowski, M. Jaworska, P.M. Kozlowski, Mechanism of Co-C photodissociation in adenosylcobalamin. Phys. Chem. Chem. Phys. 18, 19070–19082 (2016)

    Article  Google Scholar 

  76. J. C. Wright, Fundamental studies of relationships between experimental nonlinear coherent vibrational spectroscopies. J. Phys. Chem. Lett. 10, 2767–2774 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Division of Chemistry at the National Science Foundation under grant CHE-1709060. The author acknowledges with great appreciation the contributions and insights from his many graduate and postgraduate students who have worked on different aspects of this project over the last 40 years. Without them, this project would have collapsed long ago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Wright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wright, J.C. (2019). Fully Coherent Schrodinger Cat State Spectroscopy and the Future of CMDS. In: Cho, M. (eds) Coherent Multidimensional Spectroscopy. Springer Series in Optical Sciences, vol 226. Springer, Singapore. https://doi.org/10.1007/978-981-13-9753-0_7

Download citation

Publish with us

Policies and ethics