Skip to main content

The Development and Applications of Phase Cycling in Multidimensional Optical Spectroscopy

  • Chapter
  • First Online:
Book cover Coherent Multidimensional Spectroscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 226))

Abstract

Although most experiments are performed using a non-collinear beam geometry, multidimensional optical spectroscopy experiments can also be performed using collinear and partially collinear beam geometries. Phase cycling is an important procedure to enable multidimensional optical spectroscopy experiments to be performed in collinear and partially collinear beam geometries. In this chapter, we present the general theory of phase cycling and summarizes the development and applications of the phase cycling procedures in various multidimensional optical spectroscopies. These applications include fully collinear two dimensional optical spectroscopy, pump-probe geometry third order and fifth order two dimensional optical spectroscopies, and fifth order three dimensional optical spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.M. Jonas, Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54, 425–463 (2003). https://doi.org/10.1146/annurev.physchem.54.011002.103907

    Article  ADS  Google Scholar 

  2. F.D. Fuller, J.P. Oilivie, Experimental implementations of two-dimensional Fourier transform electronic spectroscopy, Annu. Rev. Phys. Chem. 66, 667–90 (2015). https://doi.org/10.1146/annurev-physchem-040513-103623

    Article  ADS  Google Scholar 

  3. P. Hamm, M.T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Press, 2011)

    Google Scholar 

  4. D. Keusters, H.S. Tan, W.S. Warren, Role of pulse phase and direction in two-dimensional optical spectroscopy. J. Phys. Chem. A 103, 10369–10380 (1999). https://doi.org/10.1021/jp992325b

    Article  ADS  Google Scholar 

  5. P. Tian, D. Keusters, Y. Suzaki, W.S. Warren, Femtosecond phase-coherent two-dimensional spectroscopy. Science 300, 1553–1555 (2003). https://doi.org/10.1126/science.1083433

    Article  ADS  Google Scholar 

  6. H.-S. Tan, Theory and phase-cycling scheme selection principles of collinear phase coherent multi-dimensional optical spectroscopy. J. Chem. Phys. 129, 124501 (2008). https://doi.org/10.1063/1.2978381

    Article  ADS  Google Scholar 

  7. L.P. DeFlores, R.A. Nicodemus, A. Tokmakoff, Two-dimensional Fourier transform spectroscopy in the pump-probe geometry. Opt. Lett. 32, 2966–2968 (2007). https://doi.org/10.1364/OL.32.002966

    Article  ADS  Google Scholar 

  8. S.H. Shim, D.B. Strasfeld, Y.L. Ling, M.T. Zanni, Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide. Proc. Natl. Acad. Sci. U.S.A. 104, 14197–14202 (2007). https://doi.org/10.1073/pnas.0700804104

    Article  ADS  Google Scholar 

  9. J.A. Myers, K.L.M. Lewis, P.F. Tekavec, J.P. Ogilvie, Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper. Opt. Express 16, 17420–17428 (2008). https://doi.org/10.1364/OE.16.017420

    Article  ADS  Google Scholar 

  10. Z. Zhang, K.L. Wells, H.S. Tan, Purely absorptive fifth-order three-dimensional electronic spectroscopy. Opt. Lett. 37, 5058–5060 (2012). https://doi.org/10.1364/OL.37.005058

    Article  ADS  Google Scholar 

  11. S. Mukamel, in Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1995)

    Google Scholar 

  12. G. Nardin, T.M. Autry, K.L. Silverman, S.T. Cundiff, Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure. Opt. Express 21, 28617–28627 (2013). https://doi.org/10.1364/oe.21.028617

    Article  ADS  Google Scholar 

  13. F.A. Damtie, A. Wacker, T. Pullerits, K.J. Karki, Two-dimensional action spectroscopy of excitonic systems: explicit simulation using a phase-modulation technique. Phys. Rev. A 96, 053830 (2017). https://doi.org/10.1103/physreva.96.053830

  14. S. Draeger, S. Roeding, T. Brixner, Rapid-scan coherent 2D fluorescence spectroscopy. Opt. Express 25, 3259–3267 (2017). https://doi.org/10.1364/oe.25.003259

    Article  ADS  Google Scholar 

  15. S. Goetz, D.H. Li, V. Kolb, J. Pflaum, T. Brixner, Coherent two-dimensional fluorescence micro-spectroscopy. Opt. Express 26, 3915–3925 (2018). https://doi.org/10.1364/oe.26.003915

    Article  ADS  Google Scholar 

  16. A.K. De, D. Monahan, J.M. Dawlaty, G.R. Fleming, Two-dimensional fluorescence-detected coherent spectroscopy with absolute phasing by confocal imaging of a dynamic grating and 27-step phase-cycling. J. Chem. Phys. 140, 194201 (2014). https://doi.org/10.1063/1.4874697

    Article  ADS  Google Scholar 

  17. E.C. Fulmer, P. Mukherjee, A.T. Krummel, M.T. Zanni, A pulse sequence for directly measuring the anharmonicities of coupled vibrations: two-quantum two-dimensional infrared spectroscopy. J. Chem. Phys. 120, 8067–8078 (2004). https://doi.org/10.1063/1.1649725

    Article  ADS  Google Scholar 

  18. S. Mueller et al., Fluorescence-detected two-quantum and one-quantum-two-quantum 2D electronic spectroscopy. J. Phys. Chem. Lett. 9, 1964–1969 (2018). https://doi.org/10.1021/acs.jpclett.8b00541

    Article  Google Scholar 

  19. N. Krebs, I. Pugliesi, J. Hauer, E. Riedle, Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 nm supercontinuum probe. New. J. Phys. 15, 085061 (2013). https://doi.org/10.1088/1367-2630/15/8/085016

    Article  ADS  Google Scholar 

  20. S. Yan, H.S. Tan, Phase cycling schemes for two-dimensional optical spectroscopy with a pump-probe beam geometry. Chem. Phys. 360, 110–115 (2009). https://doi.org/10.1016/j.chemphys.2009.04.019

    Article  ADS  Google Scholar 

  21. Z. Zhang, K.L. Wells, E.W.J. Hyland, H.-S. Tan, Phase-cycling schemes for pump–probe beam geometry two-dimensional electronic spectroscopy. Chem. Phys. Lett. 550, 156–161 (2012). https://doi.org/10.1016/j.cplett.2012.08.037

    Article  ADS  Google Scholar 

  22. S.K.K. Kumar, A. Tamimi, M.D. Fayer, Comparisons of 2D IR measured spectral diffusion in rotating frames using pulse shaping and in the stationary frame using the standard method. J. Chem. Phys. 137, 184201 (2012). https://doi.org/10.1063/1.4764470

    Article  ADS  Google Scholar 

  23. K.L. Wells, Z.Y. Zhang, J.R. Rouxel, H.S. Tan, Measuring the spectral diffusion of chlorophyll a using two-dimensional electronic spectroscopy. J. Phys. Chem. B. 117, 2294–2299 (2013). https://doi.org/10.1021/jp310154y

    Article  ADS  Google Scholar 

  24. K.L. Wells, P.H. Lambrev, Z.Y. Zhang, G. Garab, H.S. Tan, Pathways of energy transfer in LHCII revealed by room-temperature 2D electronic spectroscopy. Phys. Chem. Chem. Phys. 16, 11640–11646 (2014). https://doi.org/10.1039/c4cp00876f

    Article  Google Scholar 

  25. H. Seiler, S. Palato, P. Kambhampati, Investigating exciton structure and dynamics in colloidal CdSe quantum dots with two-dimensional electronic spectroscopy. J. Chem. Phys. 149, 074702 (2018). https://doi.org/10.1063/1.5037223

    Article  ADS  Google Scholar 

  26. A. Mandal et al., Two-dimensional electronic spectroscopy reveals excitation energy-dependent state mixing during singlet fission in a terrylenediimide dimer. J. Am. Chem. Soc. 140, 17907–17914 (2018). https://doi.org/10.1021/jacs.8b08627

    Article  Google Scholar 

  27. B. Bruggemann, T. Pullerits, Nonperturbative modeling of fifth-order coherent multidimensional spectroscopy in light harvesting antennas. New. J. Phys. 13, 025024 (2011). https://doi.org/10.1088/1367-2630/13/2/025024

    Article  ADS  Google Scholar 

  28. J. Dostal, et al., Direct observation of exciton-exciton interactions. Nat. Commun. 9, 2466 (2018). https://doi.org/10.1038/s41467-018-04884-4

  29. P. Hamm, Three-dimensional-IR spectroscopy: Beyond the two-point frequency fluctuation correlation function. J. Chem. Phys. 124, 124506 (2006). https://doi.org/10.1063/1.2178811

    Article  ADS  Google Scholar 

  30. F. Ding, M.T. Zanni, Heterodyned 3D IR spectroscopy. Chem. Phys. 341, 95–105 (2007). https://doi.org/10.1016/j.chemphys.2007.06.010

    Article  ADS  Google Scholar 

  31. A.F. Fidler, E. Harel, G.S. Engel, Dissecting hidden couplings using fifth-order three-dimensional electronic spectroscopy. J. Phys. Chem. Lett. 1, 2876–2880 (2010). https://doi.org/10.1021/jz101064j

    Article  Google Scholar 

  32. S. Garrett-Roe, P. Hamm, Purely absorptive three-dimensional infrared spectroscopy. J. Chem. Phys. 130, 164510 (2009). https://doi.org/10.1063/1.3122982

    Article  ADS  Google Scholar 

  33. Z.Y. Zhang, K.L. Wells, M.T. Seidel, H.S. Tan, Fifth-order three-dimensional electronic spectroscopy using a pump-probe configuration. J. Phys. Chem. B. 117, 15369–15385 (2013). https://doi.org/10.1021/jp4046403

    Article  Google Scholar 

  34. Z.Y. Zhang, P.H. Lambrev, K.L. Wells, G.Z. Garab, H.S. Tan, Direct observation of multistep energy transfer in LHCII with fifth-order 3D electronic spectroscopy. Nat. Commun. 6, 2914 (2015). https://doi.org/10.1038/ncomms8914

  35. S.H. Shim, M.T. Zanni, How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping. Phys. Chem. Chem. Phys. 11, 748–761 (2009). https://doi.org/10.1039/B813817F

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the Singapore Ministry of Education Academic Research Fund (Tier 2 MOE2015-T2-1-039 and Tier 1 RG16/15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howe-Siang Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tan, HS. (2019). The Development and Applications of Phase Cycling in Multidimensional Optical Spectroscopy. In: Cho, M. (eds) Coherent Multidimensional Spectroscopy. Springer Series in Optical Sciences, vol 226. Springer, Singapore. https://doi.org/10.1007/978-981-13-9753-0_4

Download citation

Publish with us

Policies and ethics