Skip to main content

Nonlinear Spectroscopy of Chromophores in Condensed Phases with Multiple Frequency Combs

  • Chapter
  • First Online:
Coherent Multidimensional Spectroscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 226))

  • 1243 Accesses

Abstract

Coherent multidimensional spectroscopy involves more than one pulsed field-matter interaction, which creates nonlinear polarization in an optical sample and generates phase-matched coherently emitted electromagnetic fields under detection. To maintain the coherence of the involved electromagnetic fields, each single laser pulse is split into multiple pulses that remain in a fixed relative phase within their coherence lengths. However, multi-comb nonlinear spectroscopy breaks this conventional paradigm in that two or more frequency-comb lasers, which are phase stabilized and locked with one another, are used to create nonlinear polarization in the optical sample. In this chapter, nonlinear spectroscopic research utilizing two frequency combs is summarized and explained in terms of the nonlinear response function. In addition to a review of linear and nonlinear dual frequency-comb spectroscopy theory and applications, we discuss the future possibilities for the development of multi-comb nonlinear spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Brixner et al., Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005)

    Article  ADS  Google Scholar 

  2. V.I. Prokhorenko et al., Coherent control of retinal isomerization in bacteriorhodopsin. Science 313, 1257–1261 (2006)

    Article  ADS  Google Scholar 

  3. C.-C. Hsieh et al., Comprehensive studies on an overall proton transfer cycle of the ortho-green fluorescent protein chromophore. J. Am. Chem. Soc. 133, 2932–2943 (2011)

    Article  Google Scholar 

  4. Y.I. Suzuki, T. Fuji, T. Horio, T. Suzuki, Time-resolved photoelectron imaging of ultrafast S2 -> S1 internal conversion through conical intersection in pyrazine. J. Chem. Phys. 132, 174302 (2010)

    Article  ADS  Google Scholar 

  5. T. Mirkovic et al., Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 117, 249–293 (2017)

    Article  Google Scholar 

  6. J. Kim, D.E. Kim, T. Joo, Excited-state dynamics of Thioflavin T: planar stable intermediate revealed by nuclear wave packet spectroscopies. J. Phys. Chem. A 122, 1283–1290 (2018)

    Article  Google Scholar 

  7. T. Joo, Y. Jia, J.Y. Yu, M.J. Lang, G.R. Fleming, Third-order nonlinear time domain probes of solvation dynamics. J. Chem. Phys. 104, 6089–6108 (1996)

    Article  ADS  Google Scholar 

  8. D.J. Jones et al., Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000)

    Article  ADS  Google Scholar 

  9. B. Bernhardt et al., Cavity-enhanced dual-comb spectroscopy. Nat. Photon. 4, 55–57 (2009)

    Article  ADS  Google Scholar 

  10. B. Cho, T.H. Yoon, M. Cho, Dual-comb spectroscopy of molecular electronic transitions in condensed phases. Phys. Rev. A 97, 033831 (2018)

    Article  ADS  Google Scholar 

  11. D.I. Herman et al., Real-time liquid-phase organic reaction monitoring with mid-infrared attenuated total reflectance dual frequency comb spectroscopy. J. Mol. Spectrosc. 356, 39–45 (2019)

    Article  ADS  Google Scholar 

  12. E. Hase et al., Scan-less confocal phase imaging based on dual-comb microscopy. Optica 5, 634–643 (2018)

    Article  Google Scholar 

  13. H. Mikami et al., Ultrafast confocal fluorescence microscopy beyond the fluorescence lifetime limit. Optica 5, 117–126 (2018)

    Article  Google Scholar 

  14. J. Kim, B. Cho, T.H. Yoon, M. Cho, Dual-frequency comb transient absorption: broad dynamic range measurement of femtosecond to nanosecond relaxation processes. J. Phys. Chem. Lett. 1866–1871 (2018)

    Article  Google Scholar 

  15. J. Kim, T.H. Yoon, M. Cho, Interferometric measurement of transient absorption and refraction spectra with dual frequency comb. J. Phys. Chem. B 122, 9775–9785 (2018)

    Article  Google Scholar 

  16. J. Kim, J. Jeon, T.H. Yoon, M. Cho, Dual frequency-comb spectroscopy of chromophores in condensed phases. Chem. Phys. 520, 122-137 (2019)

    Article  ADS  Google Scholar 

  17. S.-J. Lee, W. Bambang, K. Motonobu, O. Motoichi, Ultra high scanning speed optical coherence tomography using optical frequency comb generators. Jpn. J. Appl. Phys. 40, L878 (2001)

    Article  ADS  Google Scholar 

  18. S. Schiller, Spectrometry with frequency combs. Opt. Lett. 27, 766–768 (2002)

    Article  ADS  Google Scholar 

  19. T.M. Fortier et al., Kilohertz-resolution spectroscopy of cold atoms with an optical frequency comb. Phys. Rev. Lett. 97, 163905 (2006)

    Article  ADS  Google Scholar 

  20. J. Jeon, J. Kim, T.H. Yoon, M. Cho, Dual frequency comb photon echo spectroscopy. J. Opt. Soc. Am. B 36, 223–234 (2019)

    Article  ADS  Google Scholar 

  21. M. Cho, Coherent two-dimensional optical spectroscopy. Chem. Rev. 108, 1331–1418 (2008)

    Article  Google Scholar 

  22. M. Cho, Two-dimensional Optical Spectroscopy (CRC Press, Boca Raton, 2009)

    Google Scholar 

  23. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, Oxford, 1995)

    Google Scholar 

  24. S. Koke et al., Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise. Nat. Photon. 4, 462 (2010)

    Article  ADS  Google Scholar 

  25. T. Minamikawa et al., Dual-comb spectroscopic ellipsometry. Nat. Commun. 8, 610 (2017)

    Article  ADS  Google Scholar 

  26. P.A. Elzinga, F.E. Lytle, Y. Jian, G.B. King, N.M. Laurendeau, Pump/probe spectroscopy by asynchronous optical sampling. Appl. Spectr. 41, 2–4 (1987)

    Article  ADS  Google Scholar 

  27. B. Lomsadze, S.T. Cundiff, Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy. Science 357, 1389–1391 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  28. B. Lomsadze, S.T. Cundiff, Frequency comb-based four-wave-mixing spectroscopy. Opt. Lett. 42, 2346–2349 (2017)

    Article  ADS  Google Scholar 

  29. M. Lezius et al., Space-borne frequency comb metrology. Optica 3, 1381–1387 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by IBS-R023-D1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minhaeng Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, J., Cho, M. (2019). Nonlinear Spectroscopy of Chromophores in Condensed Phases with Multiple Frequency Combs. In: Cho, M. (eds) Coherent Multidimensional Spectroscopy. Springer Series in Optical Sciences, vol 226. Springer, Singapore. https://doi.org/10.1007/978-981-13-9753-0_16

Download citation

Publish with us

Policies and ethics