Skip to main content

The Development of Coherent Multidimensional Microspectroscopy

  • Chapter
  • First Online:
Coherent Multidimensional Spectroscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 226))

Abstract

The development of coherent multidimensional microspectroscopy (CMDMS) is driven by a desire to investigate heterogenous samples and spatially resolve details about molecular structure and dynamics that are available using coherent multidimensional techniques (CMDS). However, incorporating traditional CMDS techniques into imaging modalities requires tackling obstacles including acquisition time, spatial resolution, and detection methods. Thus, this chapter reviews these challenges, the basics of microscopy and spatial resolution, and how different experimental setups implemented by the five research groups that have executed CMDMS approach these obstacles. In addition to a brief review of experimental set-ups, the main findings of each group are reviewed. Most of the current research is shown to be proof of concept, however with additional improvements valuable information could be gained about different biological and materials samples. In looking towards the future of the field, this chapter also reviews other methods for data reduction and detection methods that have been applied in CMDS experiments such as compressive sensing and fluorescence detection or fluorescence encoding methods to combat long acquisition times, IR detection limitations, and the diffraction limited spatial resolution inherent to the mid-IR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Bardell, The biologists’ forum: the invention of the microscope. bios 75, 78–84 (2004). https://doi.org/10.1893/0005-3155(2004)75%3c78:TIOTM%3e2.0.CO;2 (2004)

    Article  Google Scholar 

  2. J.A. Kimber, S.G. Kazarian, Spectroscopic imaging of biomaterials and biological systems with FTIR microscopy or with quantum cascade lasers. Anal. Bioanal. Chem. 409, 5813–5820 (2017). https://doi.org/10.1007/s00216-017-0574-5

    Article  Google Scholar 

  3. S. Prati, E. Joseph, G. Sciutto, R. Mazzeo, New advances in the application of FTIR microscopy and spectroscopy for the characterization of artistic materials. Acc. Chem. Res. 43, 792–801 (2010). https://doi.org/10.1021/ar900274f

    Article  Google Scholar 

  4. L.M. Miller, M.W. Bourassa, R.J. Smith, FTIR spectroscopic imaging of protein aggregation in living cells. Biochimica et Biophysica Acta (BBA) - Biomembranes 1828, 2339–2346 (2013). https://doi.org/10.1016/j.bbamem.2013.01.014 (2013)

    Article  Google Scholar 

  5. F. Helmchen, W, Denk, Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005). https://doi.org/10.1038/NMETH818

    Article  Google Scholar 

  6. J. Squier, M. Müller, High resolution nonlinear microscopy: a review of sources and methods for achieving optimal imaging. Rev. Sci. Instrum. 72, 2855–2867 (2001). https://doi.org/10.1063/1.1379598

    Article  ADS  Google Scholar 

  7. R. Carriles, D.N. Schafer, K.E. Sheetz, et al., Invited review article: imaging techniques for harmonic and multiphoton absorption fluorescence microscopy. Rev. Sci. Instrum. 80, 081101 (2009). https://doi.org/10.1063/1.3184828

    Article  ADS  Google Scholar 

  8. D.J. Kissick, D. Wanapun, G.J. Simpson, Second-order nonlinear optical imaging of chiral crystals. Annu. Rev. Anal. Chem. 4, 419–437 (2011). https://doi.org/10.1146/annurev.anchem.111808.073722

    Article  Google Scholar 

  9. R.J. Tran, K.L. Sly, J.C. Conboy, Applications of surface second harmonic generation in biological sensing. Annu. Rev. Anal. Chem. 10, 387–414 (2017). https://doi.org/10.1146/annurev-anchem-071015-041453

    Article  Google Scholar 

  10. J.P.R. Day, K.F. Domke, G. Rago et al., Quantitative Coherent Anti-Stokes Raman Scattering (CARS) Microscopy. J. Phys. Chem. B 115, 7713–7725 (2011). https://doi.org/10.1021/jp200606e

    Article  Google Scholar 

  11. C.L. Evans, X.S. Xie, Coherent Anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu. Rev. Anal. Chem. 1, 883–909 (2008). https://doi.org/10.1146/annurev.anchem.1.031207.112754

    Article  Google Scholar 

  12. D. Polli, V. Kumar, C.M. Valensise et al., Broadband coherent Raman Scattering Microscopy. Laser Photonics Rev. 12, 1800020 (2018). https://doi.org/10.1002/lpor.201800020

    Article  ADS  Google Scholar 

  13. A. Hanninen, M.W. Shu, E.O. Potma, Hyperspectral imaging with laser-scanning sum-frequency generation microscopy. Biomed Opt. Express 8, 4230–4242 (2017). https://doi.org/10.1364/BOE.8.004230

    Article  Google Scholar 

  14. C.M. Lee, K. Kafle, S. Huang, S.H. Kim, Multimodal broadband vibrational sum frequency generation (MM-BB-V-SFG) spectrometer and microscope. J. Phys. Chem. B. 120, 102–116 (2016). https://doi.org/10.1021/acs.jpcb.5b10290

    Article  Google Scholar 

  15. Y. Li, D. Chen, H. Niu, A method for achieving super resolution vibrational sum-frequency generation microscopy by structured illumination. IEEE Photonics J. 9, 1–8 (2017). https://doi.org/10.1109/JPHOT.2017.2705124

    Article  Google Scholar 

  16. R. Heintzmann, G. Ficz, Breaking the resolution limit in light microscopy. Brief. Func. Genomics 5, 289–301 (2006). https://doi.org/10.1093/bfgp/ell036

    Article  Google Scholar 

  17. J. Squier, M. Müller, High resolution nonlinear microscopy: a review of sources and methods for achieving optimal imaging High resolution nonlinear microscopy: a review of sources and methods for achieving optimal imaging. Rev. Sci. Instrum. 2855, 2855–2867 (2001). https://doi.org/10.1063/1.1379598

    Article  ADS  Google Scholar 

  18. P. Hamm, M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy. (Cambridge University Press, 2011)

    Google Scholar 

  19. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1999)

    Google Scholar 

  20. P.F. Tekavec, G.A. Lott, A.H. Marcus, Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation. J. Chem. Phys. 127, 214307 (2007). https://doi.org/10.1063/1.2800560

    Article  ADS  Google Scholar 

  21. B.M. Luther, K.M. Tracy, M. Gerrity et al., 2D IR spectroscopy at 100 kHz utilizing a Mid- IR OPCPA laser source. Opt. Express 24, 10095–10100 (2016). https://doi.org/10.1364/OE.24.004117

    Article  Google Scholar 

  22. C.R. Baiz, D. Schach, A. Tokmakoff, Ultrafast 2D IR microscopy. Opt. Express 22, 875–885 (2014). https://doi.org/10.1364/OE.22.018724

    Article  Google Scholar 

  23. D. Keusters, H. Tan, W.S. Warren, Role of Pulse Phase and Direction in Two-Dimensional Optical Spectroscopy. J. Phys. Chem. A 103, 10369–10380 (1999). https://doi.org/10.1021/jp992325b

    Article  ADS  Google Scholar 

  24. W. Wagner, C. Li, J. Semmlow, W. Warren, Rapid phase-cycled two-dimensional optical spectroscopy in fluorescence and transmission mode. Opt. Express 13, 3697–3706 (2005). https://doi.org/10.1364/OPEX.13.003697

    Article  ADS  Google Scholar 

  25. S. Shim, M.T. Zanni, How to turn your pump—probe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping. Phys. Chem. Chem. Phys. 11, 748–761 (2009). https://doi.org/10.1039/b813817f

    Article  Google Scholar 

  26. S. Draeger, S. Roeding, T. Brixner, Rapid-scan coherent 2D fluorescence spectroscopy. Opt. Express 25, 3259 (2017). https://doi.org/10.1364/OE.25.003259

    Article  ADS  Google Scholar 

  27. S. Goetz, D. Li, V. Kolb et al., Coherent two-dimensional fluorescence micro-spectroscopy. Opt. Express 26, 3915 (2018). https://doi.org/10.1364/OE.26.003915

    Article  ADS  Google Scholar 

  28. V. Tiwari, Y.A. Matutes, A.T. Gardiner, et al., Spatially-resolved fluorescence-detected two-dimensional electronic spectroscopy probes varying excitonic structure in photosynthetic bacteria. Nat. Commun. 9, 4219 (2018) https://doi.org/10.1038/s41467-018-06619-x

  29. J. Almeida, J. Prior, M.B. Plenio, Computation of two-dimensional spectra assisted by compressed sampling. J. Phys. Chem. Lett. 3, 2692–2696 (2012). https://doi.org/10.1021/jz3009369

    Article  Google Scholar 

  30. J.N. Sanders, S.K. Saikin, S. Mostame, et al., Compressed sensing for multidimensional spectroscopy experiments. J. Phys. Chem. Lett. 3, 2697–2702 (2012). https://doi.org/10.1021/jz300988p

    Article  Google Scholar 

  31. J.A. Dunbar, D.G. Osborne, J.M. Anna, K.J. Kubarych, Accelerated 2D-IR using compressed sensing. J. Phys. Chem. Lett. 4, 2489–2492 (2013). https://doi.org/10.1021/jz401281r

    Article  Google Scholar 

  32. S.T. Roberts, J.J. Loparo, A. Tokmakoff, Characterization of spectral diffusion from two-dimensional line shapes. J. Chem. Phys. 125, 084502 (2006). https://doi.org/10.1063/1.2232271

    Article  ADS  Google Scholar 

  33. J.S. Ostrander, A.L. Serrano, A. Ghosh, M.T. Zanni, Spatially resolved two-dimensional infrared spectroscopy via wide- field microscopy. ACS Photonics 3, 1315–1323 (2016). https://doi.org/10.1021/acsphotonics.6b00297

    Article  Google Scholar 

  34. P.M. Donaldson, G.M. Greetham, D.J. Shaw et al., A 100 kHz pulse shaping 2D-IR spectrometer based on dual Yb:KGW amplifiers. J. Phys. Chem. A 122, 780–787 (2018). https://doi.org/10.1021/acs.jpca.7b10259

    Article  Google Scholar 

  35. N.M. Kearns, R.D. Mehlenbacher, A.C. Jones, M.T. Zanni, Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz. Opt. Express 25, 7869 (2017). https://doi.org/10.1364/OE.25.007869

    Article  ADS  Google Scholar 

  36. K.M. Tracy, B. Guchhait, C.A. Tibbetts, et al., Visualizing chemical dynamics in an ionic liquid microdroplet using ultrafast 2DIR microscopy. In preparation (2019)

    Google Scholar 

  37. A.K. De, D. Monahan, J.M. Dawlaty, G.R. Fleming, Two-dimensional fluorescence-detected coherent spectroscopy with absolute phasing by confocal imaging of a dynamic grating and 27-step phase-cycling. J. Chem. Phys. 140, 194201 (2014). https://doi.org/10.1063/1.4874697

    Article  ADS  Google Scholar 

  38. G.A. Lott, A. Perdomo-ortiz, J.K. Utterback, et al., Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy. Proc. Natl. Acad. Sci. USA, 108, 16521–16526 (2011). https://doi.org/10.1073/pnas.1017308108

    Article  ADS  Google Scholar 

  39. J.N. Mastron, A. Tokmako, Fourier transform fluorescence-encoded infrared spectroscopy. J. Phys. Chem. A 122, 554–562 (2018). https://doi.org/10.1021/acs.jpca.7b10305

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amber T. Krummel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tibbetts, C.A., Luther, B.M., Krummel, A.T. (2019). The Development of Coherent Multidimensional Microspectroscopy. In: Cho, M. (eds) Coherent Multidimensional Spectroscopy. Springer Series in Optical Sciences, vol 226. Springer, Singapore. https://doi.org/10.1007/978-981-13-9753-0_14

Download citation

Publish with us

Policies and ethics