Skip to main content

Ultrafast Vibrational Dynamics at Aqueous Interfaces Studied by 2D Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy

  • Chapter
  • First Online:
Coherent Multidimensional Spectroscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 226))

Abstract

In this article, we review our recent studies on the ultrafast vibrational dynamics at aqueous interfaces carried out with two-dimensional (2D) heterodyne-detected vibrational sum frequency generation (HD-VSFG) spectroscopy. Compared to the wealth of knowledge about bulk water, molecular-level understanding of interfacial water is still poor due to the technical difficulty in selectively observing molecules at the interfaces. HD-VSFG spectroscopy is based on the second-order optical process and thus intrinsically interface-selective. 2D HD-VSFG spectroscopy is its extension to the time-resolved measurement, and it is an interfacial analog of 2D IR spectroscopy which has been extensively utilized for bulk studies. This novel interface-selective ultrafast spectroscopy has enabled us to investigate ultrafast vibrational dynamics at aqueous interfaces at the high level equivalent to the bulk studies. We describe the principle and instrumentation of 2D HD-VSFG spectroscopy as well as several selected examples of 2D HD-VSFG studies that provided new insights into aqueous interfaces. At the air/neat water interface, 2D HD-VSFG indicated high similarity of hydrogen-bonded OH of interfacial water to that of bulk water while unique non-hydrogen bonded OH is present at the interface. At the charged surfactant/water interfaces, 2D HD-VSFG enabled us to clearly observe ultrafast spectral diffusion in the OH stretch band and demonstrated the importance of isotopic dilution for unambiguous observation of vibrational dynamics. At model membrane lipid/water interfaces, it was found that the hydrogen-bonded dynamics is greatly affected by the interaction between the interfacial water and the head group of the lipids and that the effects of coexisting head groups cannot simply be summed up but they are highly cooperative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.T.J. Nibbering, T. Elsaesser, Ultrafast vibrational dynamics of hydrogen bonds in the condensed phase. Chem. Rev. 104(4), 1887–1914 (2004)

    Article  Google Scholar 

  2. S. Nihonyanagi, J.A. Mondal, S. Yamaguchi, T. Tahara, Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation. Annu. Rev. Phys. Chem. 64(1), 579–603 (2013)

    Article  ADS  Google Scholar 

  3. Y.R. Shen, Phase-sensitive sum-frequency spectroscopy. Annu. Rev. Phys. Chem. 64(1), 129–150 (2013)

    Article  ADS  Google Scholar 

  4. S. Nihonyanagi, S. Yamaguchi, T. Tahara, Ultrafast dynamics at water interfaces studied by vibrational sum frequency generation spectroscopy. Chem. Rev. 117(16), 10665–10693 (2017)

    Article  Google Scholar 

  5. Y.R. Shen, V. Ostroverkhov, Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem. Rev. 106(4), 1140–1154 (2006)

    Article  Google Scholar 

  6. C.S. Tian, Y.R. Shen, Sum-frequency vibrational spectroscopic studies of water/vapor interfaces. Chem. Phys. Lett. 470(1), 1–6 (2009)

    Article  ADS  Google Scholar 

  7. S. Nihonyanagi, S. Yamaguchi, T. Tahara, Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study. J. Chem. Phys. 130(20), 204704 (2009)

    Article  ADS  Google Scholar 

  8. R. Superfine, J.Y. Huang, Y.R. Shen, Phase measurement for surface infrared visible sum-frequency generation. Opt. Lett. 15(22), 1276–1278 (1990)

    Article  ADS  Google Scholar 

  9. J.A. McGuire, Y.R. Shen, Ultrafast vibrational dynamics at water interfaces. Science 313(5795), 1945–1948 (2006)

    Article  ADS  Google Scholar 

  10. M. Smits, A. Ghosh, M. Sterrer, M. Müller, M. Bonn, Ultrafast vibrational energy transfer between surface and bulk water at the air-water interface. Phys. Rev. Lett. 98(9), 098302 (2007)

    Article  ADS  Google Scholar 

  11. A. Ghosh, M. Smits, J. Bredenbeck, M. Bonn, membrane-bound water is energetically decoupled from nearby bulk water: an ultrafast surface-specific investigation. J. Am. Chem. Soc. 129(31), 9608–9609 (2007)

    Article  Google Scholar 

  12. P.C. Singh, S. Nihonyanagi, S. Yamaguchi, T. Tahara, Ultrafast vibrational dynamics of water at a charged interface revealed by two-dimensional heterodyne-detected vibrational sum frequency generation. J. Chem. Phys. 137(9), 094706 (2012)

    Article  ADS  Google Scholar 

  13. P. Hamm, M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy. Cambridge University Press (2011)

    Google Scholar 

  14. K. Inoue, S. Nihonyanagi, P.C. Singh, S. Yamaguchi, T. Tahara, 2D heterodyne-detected sum frequency generation study on the ultrafast vibrational dynamics of H2O and HOD water at charged interfaces. J. Chem. Phys. 142(21), 212431 (2015)

    Article  ADS  Google Scholar 

  15. P. Hamm, M. Lim, R.M. Hochstrasser, Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy. J. Phys. Chem. B 102(31), 6123–6138 (1998)

    Article  Google Scholar 

  16. S. Yamaguchi, T. Tahara, Heterodyne-detected electronic sum frequency generation: “Up” versus “down” alignment of interfacial molecules. J. Chem. Phys. 129(10), 101102 (2008)

    Article  ADS  Google Scholar 

  17. M. Cho, Coherent two-dimensional optical spectroscopy. Chem. Rev. 108(4), 1331–1418 (2008)

    Article  Google Scholar 

  18. W. Xiong, J.E. Laaser, R.D. Mehlenbacher, M.T. Zanni, Adding a dimension to the infrared spectra of interfaces using heterodyne detected 2D sum-frequency generation (HD 2D SFG) spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 108(52), 20902–20907 (2011)

    Article  ADS  Google Scholar 

  19. M. Schleeger, M. Grechko, M. Bonn, Background-free fourth-order sum frequency generation spectroscopy. J. Phys. Chem. Lett. 6(11), 2114–2120 (2015)

    Article  Google Scholar 

  20. H. Vanselous, A.M. Stingel, P.B. Petersen, Interferometric 2D sum frequency generation spectroscopy reveals structural heterogeneity of catalytic monolayers on transparent materials. J. Phys. Chem. Lett. 8(4), 825–830 (2017)

    Article  Google Scholar 

  21. S. Nihonyanagi, R. Kusaka, K. Inoue, A. Adhikari, S. Yamaguchi, T. Tahara, Accurate determination of complex χ(2) spectrum of the air/water interface. J. Chem. Phys. 143(12), 124707 (2015)

    Google Scholar 

  22. S. Yamaguchi, Development of single-channel heterodyne-detected sum frequency generation spectroscopy and its application to the water/vapor interface. J. Chem. Phys. 143(3), 034202 (2015)

    Article  ADS  Google Scholar 

  23. Q. Du, R. Superfine, E. Freysz, Y.R. Shen, Vibrational spectroscopy of water at the vapor/water interface. Phys. Rev. Lett. 70(15), 2313–2316 (1993)

    Article  ADS  Google Scholar 

  24. P.C. Singh, S. Nihonyanagi, S. Yamaguchi, T. Tahara, Communication: ultrafast vibrational dynamics of hydrogen bond network terminated at the air/water interface: a two-dimensional heterodyne-detected vibrational sum frequency generation study. J. Chem. Phys. 139(16), 161101 (2013)

    Article  ADS  Google Scholar 

  25. Z. Zhang, L. Piatkowski, H.J. Bakker, M. Bonn, Ultrafast vibrational energy transfer at the water/air interface revealed by two-dimensional surface vibrational spectroscopy. Nat. Chem. 3(11), 888–893 (2011)

    Article  Google Scholar 

  26. C.-S. Hsieh, R.K. Campen, M. Okuno, E.H.G. Backus, Y. Nagata, M. Bonn, Mechanism of vibrational energy dissipation of free OH groups at the air–water interface. Proc. Natl. Acad. Sci. USA 110(47), 18780–18785 (2013)

    Article  ADS  Google Scholar 

  27. X. Wei, Y.R. Shen, Motional effect in surface sum-frequency vibrational spectroscopy. Phys. Rev. Lett. 86(21), 4799–4802 (2001)

    Article  ADS  Google Scholar 

  28. T. Ishiyama, A. Morita, T. Tahara, Molecular dynamics study of two-dimensional sum frequency generation spectra at vapor/water interface. J. Chem. Phys. 142(21), 212407 (2015)

    Article  ADS  Google Scholar 

  29. C.-S. Hsieh, M. Okuno, J. Hunger, E.H.G. Backus, Y. Nagata, M. Bonn, Aqueous heterogeneity at the air/water interface revealed by 2D-HD-SFG spectroscopy. Angew. Chem. Int. Ed. 53(31), 8146–8149 (2014)

    Article  Google Scholar 

  30. S.T. van der Post, C.S. Hsieh, M. Okuno, Y. Nagata, H.J. Bakker, M. Bonn, J. Hunger, Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015)

    Article  ADS  Google Scholar 

  31. K. Inoue, T. Ishiyama, S. Nihonyanagi, S. Yamaguchi, A. Morita, T. Tahara, Efficient spectral diffusion at the air/water interface revealed by femtosecond time-resolved heterodyne-detected vibrational sum frequency generation spectroscopy. J. Phys. Chem. Lett. 7(10), 1811–1815 (2016)

    Article  Google Scholar 

  32. A.J. Lock, H.J. Bakker, Temperature dependence of vibrational relaxation in liquid H2O. J. Chem. Phys. 117(4), 1708–1713 (2002)

    Article  ADS  Google Scholar 

  33. K. Ramasesha, L. De Marco, A. Mandal, A. Tokmakoff, Water vibrations have strongly mixed intra- and intermolecular character. Nat. Chem. 5(11), 935–940 (2013)

    Article  Google Scholar 

  34. D.E. Gragson, G.L. Richmond, Investigations of the structure and hydrogen bonding of water molecules at liquid surfaces by vibrational sum frequency spectroscopy. J. Phys. Chem. B 102(20), 3847–3861 (1998)

    Article  Google Scholar 

  35. M.R. Watry, T.L. Tarbuck, G.L. Richmond, Vibrational sum-frequency studies of a series of phospholipid monolayers and the associated water structure at the vapor/water interface. J. Phys. Chem. B 107(2), 512–518 (2003)

    Article  Google Scholar 

  36. M.C. Gurau, S.-M. Lim, E.T. Castellana, F. Albertorio, S. Kataoka, P.S. Cremer, On the mechanism of the Hofmeister effect. J. Am. Chem. Soc. 126(34), 10522–10523 (2004)

    Article  Google Scholar 

  37. G. Ma, X. Chen, H.C. Allen, Dangling OD confined in a Langmuir monolayer. J. Am. Chem. Soc. 129(45), 14053–14057 (2007)

    Article  Google Scholar 

  38. X. Chen, W. Hua, Z. Huang, H.C. Allen, Interfacial water structure associated with phospholipid membranes studied by phase-sensitive vibrational sum frequency generation spectroscopy. J. Am. Chem. Soc. 132(32), 11336–11342 (2010)

    Article  Google Scholar 

  39. Y.-C. Wen, S. Zha, X. Liu, S. Yang, P. Guo, G. Shi, H. Fang, Y.R. Shen, C. Tian, Unveiling microscopic structures of charged water interfaces by surface-specific vibrational spectroscopy. Phys. Rev. Lett. 116(1), 016101 (2016)

    Article  ADS  Google Scholar 

  40. S. Strazdaite, K. Meister, H.J. Bakker, Orientation of polar molecules near charged protein interfaces. Phys. Chem. Chem. Phys. 18(10), 7414–7418 (2016)

    Article  Google Scholar 

  41. S. Devineau, K. Inoue, R. Kusaka, S.-H. Urashima, S. Nihonyanagi, D. Baigl, A. Tsuneshige, T. Tahara, Change of the isoelectric point of hemoglobin at the air/water interface probed by the orientational flip-flop of water molecules. Phys. Chem. Chem. Phys. 19(16), 10292–10300 (2017)

    Article  Google Scholar 

  42. N. Takeshita, M. Okuno, T.-A. Ishibashi, Molecular conformation of DPPC phospholipid Langmuir and Langmuir-Blodgett monolayers studied by heterodyne-detected vibrational sum frequency generation spectroscopy. Phys. Chem. Chem. Phys. 19(3), 2060–2066 (2017)

    Article  Google Scholar 

  43. S. Nihonyanagi, S. Yamaguchi, T. Tahara, Water hydrogen bond structure near highly charged interfaces is not like ice. J. Am. Chem. Soc. 132(20), 6867–6869 (2010)

    Article  Google Scholar 

  44. G.L. Richmond, Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy. Chem. Rev. 102(8), 2693–2724 (2002)

    Article  Google Scholar 

  45. M. Sovago, R.K. Campen, G.W.H. Wurpel, M. Müller, H.J. Bakker, M. Bonn, Vibrational response of hydrogen-bonded interfacial water is dominated by intramolecular coupling. Phys. Rev. Lett. 100(17), 173901 (2008)

    Article  ADS  Google Scholar 

  46. R.A. Livingstone, Y. Nagata, M. Bonn, E.H.G. Backus, Two types of water at the water—surfactant interface revealed by time resolved vibrational spectroscopy. J. Am. Chem. Soc. 137(47), 14912–14919 (2015)

    Article  Google Scholar 

  47. P.C. Singh, K. Inoue, S. Nihonyanagi, S. Yamaguchi, T. Tahara, Femtosecond hydrogen bond dynamics of bulk-like and bound water at positively and negatively charged lipid interfaces revealed by 2D HD-VSFG spectroscopy. Angew. Chem. Int. Ed. 55(36), 10621–10625 (2016)

    Article  Google Scholar 

  48. K. Kwak, S. Park, I.J. Finkelstein, M.D. Fayer, Frequency-frequency correlation functions and apodization in two-dimensional infrared vibrational echo spectroscopy: a new approach. J. Chem. Phys. 127(12), 124503 (2007)

    Article  ADS  Google Scholar 

  49. C.J. Fecko, J.D. Eaves, J.J. Loparo, A. Tokmakoff, P.L. Geissler, Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science 301(5640), 1698–1702 (2003)

    Article  ADS  Google Scholar 

  50. S. Roy, S.M. Gruenbaum, J.L. Skinner, Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces. II. Two-dimensional spectra. Two-dimensional spectra. J. Chem. Phys. 141(22), 22D505 (2014)

    Google Scholar 

  51. K. Inoue, M. Ahmed, S. Nihonyanagi, T. Tahara, Effect of hydrogen-bond on ultrafast spectral diffusion dynamics of water at charged monolayer interfaces. J. Chem. Phys. 150(5), 054705 (2019)

    Article  ADS  Google Scholar 

  52. K. Inoue, P.C. Singh, S. Nihonyanagi, S. Yamaguchi, T. Tahara, Cooperative hydrogen-bond dynamics at a zwitterionic lipid/water interface revealed by 2D HD-VSFG spectroscopy. J. Phys. Chem. Lett. 8(20), 5160–5165 (2017)

    Article  Google Scholar 

  53. J.A. Mondal, S. Nihonyanagi, S. Yamaguchi, T. Tahara, Three distinct water structures at a zwitterionic lipid/water interface revealed by heterodyne-detected vibrational sum frequency generation. J. Am. Chem. Soc. 134(18), 7842–7850 (2012)

    Article  Google Scholar 

  54. S. Re, W. Nishima, T. Tahara, Y. Sugita, Mosaic of water orientation structures at a neutral zwitterionic lipid/water interface revealed by molecular dynamics simulations. J. Phys. Chem. Lett. 5(24), 4343–4348 (2014)

    Article  Google Scholar 

  55. T. Ishiyama, D. Terada, A. Morita, Hydrogen-bonding structure at zwitterionic lipid/water interface. J. Phys. Chem. Lett. 7(2), 216–220 (2016)

    Article  Google Scholar 

  56. Y. Nagata, S. Mukamel, Vibrational sum-frequency generation spectroscopy at the water/lipid interface: molecular dynamics simulation study. J. Am. Chem. Soc. 132(18), 6434–6442 (2010)

    Article  Google Scholar 

  57. S. Roy, S.M. Gruenbaum, J.L. Skinner, Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces. J. Chem. Phys. 141(18), 18C502 (2014)

    Article  Google Scholar 

  58. T. Ohto, E.H.G. Backus, C.-S. Hsieh, M. Sulpizi, M. Bonn, Y. Nagata, Lipid carbonyl groups terminate the hydrogen bond network of membrane-bound water. J. Phys. Chem. Lett. 6, 4499–4503 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahei Tahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Inoue, Ki., Nihonyanagi, S., Tahara, T. (2019). Ultrafast Vibrational Dynamics at Aqueous Interfaces Studied by 2D Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy. In: Cho, M. (eds) Coherent Multidimensional Spectroscopy. Springer Series in Optical Sciences, vol 226. Springer, Singapore. https://doi.org/10.1007/978-981-13-9753-0_10

Download citation

Publish with us

Policies and ethics