Skip to main content

Segmentation of Calcified Plaques in Intravascular Ultrasound Images

  • Conference paper
  • First Online:
Smart Computing Paradigms: New Progresses and Challenges

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 766))

Abstract

Intravascular ultrasound (IVUS) imaging is mostly used in the diagnosis and treatment of coronary artery diseases, especially in atherosclerosis, because it becomes very difficult to identify in the calcified regions manually. The IVUS images allow to visualize the inner portion of the coronary artery with enhanced resolution and also to acquire the cross-sectional images of arteries. Therefore, this paper presents a computational framework to identify the calcified region in IVUS images. In this paper, spatial fuzzy C-means approach is used to extract the exact boundary of the calcified plaque region in the IVUS images along with the wavelet transform decomposition. This clustering approach is capable of incorporating additional spatial information obtained from the neighboring pixels and also overcoming the limitations of noise and artifacts in IVUS coronary images. Several experiments have been performed on the different IVUS data and their experimental results are analyzed in terms of both quantitative and qualitative manner. The results revealed that the spatial fuzzy C-means provides better segmentation accuracy by extracting the calcified region as compared with other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ulusoy, F.R., Yolcu, M., Ä°pek, E., Korkmaz, A.F., Gurler, M.Y., Gulbaran, M.: Coronary artery disease risk factors, coronary artery calcification and coronary bypass surgery. J. Clin. Diagn. Res. 9 (2015)

    Google Scholar 

  2. Banchhor, S.K., Araki, T., Londhe, N.D., Ikeda, N., Radeva, P., Elbaz, A., Saba, L., Nicolaides, A., Shafique, S., Laird, J.R.: Five multiresolution-based calcium volume measurement techniques from coronary IVUS videos: A comparative approach. Comput. Methods Programs Biomed. 134, 237–258 (2016)

    Article  Google Scholar 

  3. Banchhor, S.K., Londhe, N.D., Saba, L., Radeva, P., Laird, J.R., Suri, J.S.: Relationship between automated coronary calcium volumes and a set of manual coronary lumen volume, vessel volume and atheroma volume in Japanese diabetic cohort. J. Clin. Diagn. Res. 11 (2017)

    Google Scholar 

  4. Kubo, T., Imanishi, T., Takarada, S., Kuroi, A., Ueno, S., Yamano, T., Tanimoto, T., Matsuo, Y., Masho, T., Kitabata, H.: Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J. Am. Coll. Cardiol. 50, 933–939 (2007)

    Article  Google Scholar 

  5. Araki, T., Nakamura, M., Utsunomiya, M., Sugi, K.: Visualization of coronary plaque in arterial remodeling using a new 40-MHz intravascular ultrasound imaging system. Catheter Cardiovasc. Interv. 81, 471–480 (2013)

    Article  Google Scholar 

  6. Araki, T., Ikeda, N., Dey, N., Acharjee, S., Molinari, F., Saba, L., Godia, E.C., Nicolaides, A., Suri, J.S.: Shape-based approach for coronary calcium lesion volume measurement on intravascular ultrasound imaging and its association with carotid intima-media thickness. J. Ultrasound Med. 34, 469–482 (2015)

    Article  Google Scholar 

  7. Mintz, G.S., Popma, J.J., Pichard, A.D., Kent, K.M., Satler, L.F., Chuang, Y.C., Ditrano, C.J., Leon, M.B.: Patterns of calcification in coronary artery disease: a statistical analysis of intravascular ultrasound and coronary angiography in 1155 lesions. Circulation 91, 1959–1965 (1995)

    Article  Google Scholar 

  8. Coutts, S.B., Modi, J., Patel, S.K., Demchuk, A.M., Goyal, M., Hill, M.D.: CT/CT angiography and MRI findings predict recurrent stroke after transient ischemic attack and minor stroke: results of the prospective CATCH study. Stroke 43, 1013–1017 (2012)

    Article  Google Scholar 

  9. Schoenhagen, P., Nissen, S.: Understanding coronary artery disease: tomographic imaging with intravascular ultrasound. Heart 88, 91–96 (2002)

    Article  Google Scholar 

  10. Katouzian, A., Angelini, E., Sturm, B., Konofagou, E., Carlier, S.G., Laine, A.F.: Applications of multiscale overcomplete wavelet-based representations in Intravascular Ultrasound (IVUS) images. Ultrasound Imaging, pp. 313–336. Springer, Berlin (2012)

    Google Scholar 

  11. Araki, T., Banchhor, S.K., Londhe, N.D., Ikeda, N., Radeva, P., Shukla, D., Saba, L., Balestrieri, A., Nicolaides, A., Shafique, S.: Reliable and accurate calcium volume measurement in coronary artery using intravascular ultrasound videos. J. Med. Syst. 40, 51 (2016)

    Article  Google Scholar 

  12. Gao, Z., Guo, W., Liu, X., Huang, W., Zhang, H., Tan, N., Hau, W.K., Zhang, Y.-T., Liu, H.: Automated detection framework of the calcified plaque with acoustic shadowing in IVUS images. PloS one 9 (2014)

    Article  Google Scholar 

  13. Cardinal, M.H., Meunier, J., Soulez, G., Maurice, R.L., Therasse, E., Cloutier, G.: Intravascular ultrasound image segmentation: a three-dimensional fast-marching method based on gray level distributions. IEEE Trans. Med. Imaging 25, 590–601 (2006)

    Article  Google Scholar 

  14. Santos Filho, E., Saijo, Y., Tanaka, A., Yoshizawa, M.: Detection and quantification of calcifications in intravascular ultrasound images by automatic thresholding. Ultrasound Med. Biol. 34, 160–165 (2008)

    Article  Google Scholar 

  15. Suganya, R., Shanthi, R.: Fuzzy c-means algorithm-a review. Int. J. Sci. Res. Publ. 2, 1–3 (2012)

    Google Scholar 

  16. Chuang, K.-S., Tzeng, H.-L., Chen, S., Wu, J., Chen, T.-J.: Fuzzy c-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph. 30, 9–15 (2006)

    Article  Google Scholar 

  17. Yang, M.-S., Tsai, H.-S.: A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction. Pattern Recogn. Lett. 29, 1713–1725 (2008)

    Article  Google Scholar 

  18. Yuan, Y., He, C.: Adaptive active contours without edges. Math. Comput. Model. 55, 1705–1721 (2012)

    Article  MathSciNet  Google Scholar 

  19. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)

    Article  Google Scholar 

  20. Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 22, 266–280 (2000)

    Article  Google Scholar 

  21. Li, B., Chui, C., Ong, S.H., Chang, S.: Integrating FCM and level sets for liver tumor segmentation. In: Lim, C., Goh, J.H. (eds.) Proceedings: 13th International Conference on Biomedical Engineering, vol. 23, pp. 202–205. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Puertas, E., Escalera, S., Pujol, O.: Generalized multi-scale stacked sequential learning for multi-class classification. Pattern Anal. Appl. 18, 247–261 (2015)

    Article  MathSciNet  Google Scholar 

  23. Mahajan, S.H., Harpale, V.K.: Adaptive and non-adaptive image interpolation techniques. In: International Conference on Computing Communication Control and Automation, pp. 772–775 (2015)

    Google Scholar 

  24. Harb, S.M.E., Isa, N.A.M., Salamah, S.: New adaptive interpolation scheme for image upscaling. Multimed. Tools Appl. 75, 7293–7325 (2016)

    Article  Google Scholar 

  25. Acharya, T., Tsai, P.-S.: Computational foundations of image interpolation algorithms. Ubiquity 2007, 1–17 (2017)

    Article  Google Scholar 

  26. Press, W.H.: Numerical Recipes in Pascal: the Art of Scientific Computing. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  27. De Boor, C., De Boor, C., Mathématicien, E.-U., De Boor, C., De Boor, C.: A practical guide to splines. Springer, New York (1978)

    Book  Google Scholar 

  28. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989)

    Article  Google Scholar 

  29. Turkowski, K.: Filters for common resampling tasks. Graphics gems, pp. 147–165. Academic Press Professional, Inc. (1990)

    Google Scholar 

  30. Adelson, E.H., Burt, P.J.: Image data compression with the Laplacian pyramid. University of Maryland, Computer Science (1980)

    Google Scholar 

  31. Li, B.N., Chui, C.K., Chang, S., Ong, S.H.: Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Comput. Biol. Med. 41, 1–10 (2011)

    Article  Google Scholar 

  32. Gupta, D., Anand, R.S.: A hybrid edge-based segmentation approach for ultrasound medical images. Biomed. Signal Process. Control 31, 116–126 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara Chand Ulli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ulli, T.C., Gupta, D. (2020). Segmentation of Calcified Plaques in Intravascular Ultrasound Images. In: Elçi, A., Sa, P., Modi, C., Olague, G., Sahoo, M., Bakshi, S. (eds) Smart Computing Paradigms: New Progresses and Challenges. Advances in Intelligent Systems and Computing, vol 766. Springer, Singapore. https://doi.org/10.1007/978-981-13-9683-0_7

Download citation

Publish with us

Policies and ethics