Diet and Nutrition in Alzheimer’s Disease and Healthy Aging

  • Poonam Sharma
  • Vivek Kumar Gaur
  • Janmejai Kumar SrivastavaEmail author


Aging is a universally natural phenomenon which is associated with cognitive decline and several neurological disorders such as Alzheimer disease. As this phenomenon is inevitable, many factors affect the progression and development of age-associated cognitive decline. Among these factors, lifestyle pattern such as exercise and diet plays a major role in contributing to neurological fitness. In this chapter, we discuss the relationship and effects of food and nutrition over aging and Alzheimer disease. Mediterranean diet rich in antioxidants and bioactive compounds is most efficient in delaying the onset and progression of age-related neurological disorders. Flavonoids and polyphenols are the major antiaging food component which also serves as antioxidants. These effectively reduce the generation of stress-induced reactive oxygen species. Also, omega-3 fatty acid such as docosahexaenoic acid is an essential fatty acid whose supplementation in the diet improves mental health.


  1. Abuznait AH, Qosa H, Busnena BA, El Sayed KA, Kaddoumi A (2013) Olive-oil-derived oleocanthal enhances β-amyloid clearance as a potential neuroprotective mechanism against Alzheimer’s disease: in vitro and in vivo studies. ACS Chem Neurosci 4(6):973–982PubMedPubMedCentralCrossRefGoogle Scholar
  2. Afrin S, Gasparrini M, Forbes-Hernandez TY, Reboredo-Rodriguez P, Mezzetti B, Varela-López A, Giampieri F, Battino M (2016) Promising health benefits of the strawberry: a focus on clinical studies. J Agric Food Chem 64(22):4435–4449PubMedCrossRefGoogle Scholar
  3. Afshordel S, Hagl S, Werner D, Röhner N, Kögel D, Bazan NG, Eckert GP (2015) Omega-3 polyunsaturated fatty acids improve mitochondrial dysfunction in brain aging–impact of Bcl-2 and NPD-1 like metabolites. Prostaglandins, Leukot Essent Fatty Acids (PLEFA) 92:23–31CrossRefGoogle Scholar
  4. Aridi Y, Walker J, Wright O (2017) The association between the Mediterranean dietary pattern and cognitive health: a systematic review. Nutrients 9(7):674PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bach AC, Babayan VK (1982) Medium-chain triglycerides: an update. Am J Clin Nutr 36(5):950–962PubMedCrossRefGoogle Scholar
  6. Baddeley AD, Baddeley HA, Bucks RS, Wilcock GK (2001) Attentional control in Alzheimer’s disease. Brain 124(8):1492–1508PubMedCrossRefGoogle Scholar
  7. Barbagallo M, Belvedere M, Di Bella G, Dominguez LJ (2011) Altered ionized magnesium levels in mild-to-moderate Alzheimer’s disease. Magnes Res 24(3):115–121Google Scholar
  8. Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78(2):547–581CrossRefGoogle Scholar
  9. Belkouch M, Hachem M, Elgot A, Van AL, Picq M, Guichardant M, Lagarde M, Bernoud-Hubac N (2016) The pleiotropic effects of omega-3 docosahexaenoic acid on the hallmarks of Alzheimer’s disease. J Nutr Biochem 38:1–1PubMedCrossRefGoogle Scholar
  10. Berger MM (2005) Can oxidative damage be treated nutritionally? Clin Nutr 24(2):172–183PubMedCrossRefGoogle Scholar
  11. Berr C, Portet F, Carriere I, Akbaraly TN, Feart C, Gourlet V, Combe N, Barberger-Gateau P, Ritchie K (2009) Olive oil and cognition: results from the three-city study. Dement Geriatr Cogn Disord 28(4):357–364PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bhowmik D, Kumar KS, Paswan S, Srivastava S (2012) Tomato-a natural medicine and its health benefits. J Pharmacogn Phytochem 1(1):33–43Google Scholar
  13. Biller A, Reuter M, Patenaude B, Homola GA, Breuer F, Bendszus M, Bartsch AJ (2015) Responses of the human brain to mild dehydration and rehydration explored in vivo by 1H-MR imaging and spectroscopy. Am J Neuroradiol 36:2277–2284PubMedCrossRefGoogle Scholar
  14. Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387–403PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bonaccio M, Di Castelnuovo A, Bonanni A, Costanzo S, De Lucia F, Pounis G, Zito F, Donati MB, De Gaetano G, Iacoviello L (2013) Adherence to a Mediterranean diet is associated with a better health-related quality of life: a possible role of high dietary antioxidant content. BMJ Open 3(8):e003003PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bondonno CP, Downey LA, Croft KD, Scholey A, Stough C, Yang X, Considine MJ, Ward NC, Puddey IB, Swinny E, Mubarak A (2014) The acute effect of flavonoid-rich apples and nitrate-rich spinach on cognitive performance and mood in healthy men and women. Food Funct 5(5):849–858PubMedCrossRefGoogle Scholar
  17. Bowman GL (2012) Ascorbic acid, cognitive function, and Alzheimer’s disease: a current review and future direction. Biofactors 38(2):114–122PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bowtell JL, Aboo-Bakkar Z, Conway ME, Adlam AL, Fulford J (2017) Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Appl Physiol Nutr Metab 42(7):773–779PubMedCrossRefGoogle Scholar
  19. Brayne C, Gill C, Huppert FA, Barkley C, Gehlhaar E, Girling DM, O’connor DW, Paykel ES (1995) Incidence of clinically diagnosed subtypes of dementia in an elderly population: Cambridge Project for Later Life. Br J Psychiatry 167:255–262PubMedCrossRefGoogle Scholar
  20. Brewer GJ (2012) Copper excess, zinc deficiency, and cognition loss in Alzheimer’s disease. Biofactors 38(2):107–113PubMedCrossRefGoogle Scholar
  21. Brini M, Calì T, Ottolini D, Carafoli E (2014) Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 71(15):2787–2814PubMedCrossRefGoogle Scholar
  22. Bucossi S, Ventriglia M, Panetta V, Salustri C, Pasqualetti P, Mariani S, Siotto M, Rossini PM, Squitti R (2011) Copper in Alzheimer’s disease: a meta-analysis of serum, plasma, and cerebrospinal fluid studies. J Alzheimers Dis 24(1):175–185PubMedCrossRefGoogle Scholar
  23. Burdge G (2004) α-Linolenic acid metabolism in men and women: nutritional and biological implications. Curr Opin Clin Nutr Metab Care 7:137–144PubMedCrossRefGoogle Scholar
  24. Calon F, Cole G (2007) Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: evidence from animal studies. Prostaglandins Leukot Essent Fat Acids 77(5–6):287–293CrossRefGoogle Scholar
  25. Castro-Barquero S, Lamuela-Raventós R, Doménech M, Estruch R (2018) Relationship between Mediterranean dietary polyphenol intake and obesity. Nutrients 10(10):1523PubMedCentralCrossRefPubMedGoogle Scholar
  26. Chandrashekar P, Lokesh BR, Krishna AG (2010) Hypolipidemic effect of blends of coconut oil with soybean oil or sunflower oil in experimental rats. Food Chem 123(3):728–733CrossRefGoogle Scholar
  27. Chen C, Li Y, Xu Z (2010) Chemical principles and bioactivities of blueberry. Yao xue xue bao=Acta pharmaceutica Sinica 45(4):422–429PubMedGoogle Scholar
  28. Cherbuin N, Kumar R, Sachdev P, Anstey KJ (2014) Dietary mineral intake and risk of mild cognitive impairment: the PATH through life project. Front Aging Neurosci 6:4PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chin KY, Tay S (2018) A review on the relationship between tocotrienol and Alzheimer disease. Nutrients 10(7):881PubMedCentralCrossRefGoogle Scholar
  30. Cohen G (2000) Oxidative stress, mitochondrial respiration, and Parkinson’s disease. Ann N Y Acad Sci 899(1):112–120PubMedCrossRefPubMedCentralGoogle Scholar
  31. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small G, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123):921–923PubMedCrossRefPubMedCentralGoogle Scholar
  32. Cordero JG, García-Escudero R, Avila J, Gargini R, García-Escudero V (2018) Benefit of oleuropein aglycone for Alzheimer’s Disease by promoting autophagy. Oxid Med Cell Longev 2018Google Scholar
  33. Costa AG, Garcia-Diaz DF, Jimenez P, Silva PI (2013) Bioactive compounds and health benefits of exotic tropical red–black berries. J Funct Foods 5(2):539–549CrossRefGoogle Scholar
  34. Côté J, Caillet S, Doyon G, Sylvain JF, Lacroix M (2010) Bioactive compounds in cranberries and their biological properties. Crit Rev Food Sci Nutr 50(7):666–679PubMedCrossRefGoogle Scholar
  35. Cowen LE, Hodak SP, Verbalis JG (2013) Age-associated abnormalities of water homeostasis. Endocrinol Metab Clin 42(2):349–370CrossRefGoogle Scholar
  36. Crane PK, Walker R, Hubbard RA, Li G, Nathan DM, Zheng H, Haneuse S, Craft S, Montine TJ, Kahn SE, McCormick W (2013) Glucose levels and risk of dementia. N Engl J Med 369(6):540–548PubMedPubMedCentralCrossRefGoogle Scholar
  37. Crichton RR, Wilmet S, Legssyer R, Ward RJ (2002) Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J Inorg Biochem 91(1):9–18PubMedCrossRefGoogle Scholar
  38. DaSilva NA, Nahar PP, Ma H, Eid A, Wei Z, Meschwitz S, Zawia NH, Slitt AL, Seeram NP (2017) Pomegranate ellagitannin-gut microbial-derived metabolites, urolithins, inhibit neuroinflammation in vitro. Nutr Neurosci 8:1–1Google Scholar
  39. Dastmalchi K, Flores G, Petrova V, Pedraza-Penalosa P, Kennelly EJ (2011) Edible neotropical blueberries: antioxidant and compositional fingerprint analysis. J Agric Food Chem 59(7):3020–3026PubMedPubMedCentralCrossRefGoogle Scholar
  40. Davis C, Bryan J, Hodgson J, Murphy K (2015) Definition of the Mediterranean diet; a literature review. Nutrients 7(11):9139–9153PubMedPubMedCentralCrossRefGoogle Scholar
  41. de Lima RM, dos Reis AC, de Menezes AA, Santos JV, Filho JW, Ferreira JR, de Alencar MV, da Mata AM, Khan IN, Islam A, Uddin SJ (2018) Protective and therapeutic potential of ginger (Zingiber officinale) extract and [6]-gingerol in cancer: a comprehensive review. Phytother Res 32(10):1885–1907PubMedCrossRefGoogle Scholar
  42. Deane R, Sagare A, Hamm K, Parisi M, Lane S, Finn MB, Holtzman DM, Zlokovic BV (2008) apoE isoform–specific disruption of amyloid β peptide clearance from mouse brain. J Clin Invest 118(12):4002–4013PubMedPubMedCentralCrossRefGoogle Scholar
  43. Dianne F, Ions LJ, Alatawi F, Wakeling LA (2011) The potential role of epigenetic responses to diet in ageing. Proc Nutr Soc 70(3):374–384Google Scholar
  44. Douaud G, Refsum H, de Jager CA, Jacoby R, Nichols TE, Smith SM, Smith AD (2013) Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci 110(23):9523–9528PubMedCrossRefGoogle Scholar
  45. Duning T, Kloska S, Steinsträter O, Kugel H, Heindel W, Knecht S (2005) Dehydration confounds the assessment of brain atrophy. Neurology 64(3):548–550PubMedCrossRefGoogle Scholar
  46. El-Far AH, Oyinloye BE, Sepehrimanesh M, Gab Allah MA, Abu-Reidah I, Shaheen HM, Razeghian-Jahromi I, AA Alsenosy, Noreldin AE, Al Jaouni SK, Mousa SA (2019) Date palm (Phoenix dactylifera): novel findings and future directions for food and drug discovery. Curr Drug Dis Technol 16:2. Scholar
  47. Engelhart MJ, Geerlings MI, Ruitenberg A, van Swieten JC, Hofman A, Witteman JC, Breteler MM (2002) Dietary intake of antioxidants and risk of Alzheimer disease. JAMA 287(24):3223–3229CrossRefGoogle Scholar
  48. Enomoto H, Sato K, Miyamoto K, Ohtsuka A, Yamane H (2018) Distribution analysis of anthocyanins, sugars, and organic acids in strawberry fruits using matrix-assisted laser desorption/ionization-imaging mass spectrometry. J Agric Food Chem 66(19):4958–4965PubMedCrossRefGoogle Scholar
  49. Essa MM, Vijayan RK, Castellano-Gonzalez G, Memon MA, Braidy N, Guillemin GJ (2012) Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem Res 37(9):1829–1842PubMedCrossRefGoogle Scholar
  50. Essa MM, Subash S, Akbar M, Al-Adawi S, Guillemin GJ (2015) Long-term dietary supplementation of pomegranates, figs and dates alleviate neuroinflammation in a transgenic mouse model of Alzheimer’s disease. PLoS One 10(3):e0120964PubMedPubMedCentralCrossRefGoogle Scholar
  51. Estruch R, Ros E, Salas-Salvadó J, Covas MI, Corella D, Arós F, Gómez-Gracia E, Ruiz-Gutiérrez V, Fiol M, Lapetra J, Lamuela-Raventos RM (2013) Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 368(14):1279–1290PubMedCrossRefGoogle Scholar
  52. Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ, Hebert LE, Hennekens CH, Taylor JO (1989) Prevalence of Alzheimer’s disease in a community population of older persons: higher than previously reported. JAMA 262(18):2551–2556PubMedCrossRefGoogle Scholar
  53. Faria A, Pestana D, Teixeira D, De Freitas V, Mateus N, Calhau C (2010) Blueberry anthocyanins and pyruvic acid adducts: anticancer properties in breast cancer cell lines. Phytother Res 24(12):1862–1869PubMedCrossRefGoogle Scholar
  54. Farkas E, Luiten PG (2001) Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog Neurobiol 64(6):575–611PubMedCrossRefGoogle Scholar
  55. Farr SA, Price TO, Dominguez LJ, Motisi A, Saiano F, Niehoff ML, Morley JE, Banks WA, Ercal N, Barbagallo M (2012) Extra virgin olive oil improves learning and memory in SAMP8 mice. J Alzheimers Dis 28(1):81–92PubMedCrossRefGoogle Scholar
  56. Fernando WM, Martins IJ, Goozee KG, Brennan CS, Jayasena V, Martins RN (2015) The role of dietary coconut for the prevention and treatment of Alzheimer’s disease: potential mechanisms of action. Br J Nutr 114(1):1–4PubMedCrossRefGoogle Scholar
  57. Finicelli M, Squillaro T, Di Cristo F, Di Salle A, Melone MA, Galderisi U, Peluso G (2018) Metabolic syndrome, Mediterranean diet, and polyphenols: evidence and perspectives. J Cell Physiol 14Google Scholar
  58. Fiorito S, Preziuso F, Epifano F, Scotti L, Bucciarelli T, Taddeo VA, Genovese S (2019) Novel biologically active principles from spinach, goji and quinoa. Food Chem 276:262–265PubMedCrossRefGoogle Scholar
  59. Florent-Bechard S, Desbene C, Garcia P, Allouche A, Youssef I, Escanye MC, Koziel V, Hanse M, Malaplate-Armand C, Stenger C, Kriem B (2009) The essential role of lipids in Alzheimer’s disease. Biochimie 91(6):804–809PubMedCrossRefGoogle Scholar
  60. Floyd RA, Hensley K (2002) Oxidative stress in brain aging: implications for therapeutics of neurodegenerative diseases. Neurobiol Aging 23(5):795–807PubMedCrossRefGoogle Scholar
  61. Fowler CJ, Wiberg Å, Oreland L, Marcusson J, Winblad B (1980) The effect of age on the activity and molecular properties of human brain monoamine oxidase. J Neural Transm 49(1–2):1–20PubMedCrossRefGoogle Scholar
  62. Galeffi F, Shetty PK, Sadgrove MP, Turner DA (2015) Age-related metabolic fatigue during low glucose conditions in rat hippocampus. Neurobiol Aging 36(2):982–992PubMedCrossRefGoogle Scholar
  63. Gardener H, Caunca MR (2018) Mediterranean diet in preventing neurodegenerative diseases. Curr Nutr Rep 7(1):10–20PubMedCrossRefGoogle Scholar
  64. Gardener S, Gu Y, Rainey-Smith SR, Keogh JB, Clifton PM, Mathieson SL, Taddei K, Mondal A, Ward VK, Scarmeas N, Barnes M (2012) Adherence to a Mediterranean diet and Alzheimer’s disease risk in an Australian population. Transl Psychiatry 2(10):e164PubMedPubMedCentralCrossRefGoogle Scholar
  65. Gasparrini M, Giampieri F, Forbes-Hernandez TY, Afrin S, Cianciosi D, Reboredo-Rodriguez P, Varela-Lopez A, Zhang J, Quiles JL, Mezzetti B, Bompadre S (2018) Strawberry extracts efficiently counteract inflammatory stress induced by the endotoxin lipopolysaccharide in Human Dermal Fibroblast. Food Chem Toxicol 114:128–140PubMedCrossRefGoogle Scholar
  66. Giampieri F, Tulipani S, Alvarez-Suarez JM, Quiles JL, Mezzetti B, Battino M (2012) The strawberry: composition, nutritional quality, and impact on human health. Nutrition 28(1):9–19PubMedCrossRefGoogle Scholar
  67. Gold PE (2005) Glucose and age-related changes in memory. Neurobiol Aging 26(1):60–64PubMedCrossRefGoogle Scholar
  68. González-Trujano ME, Pellicer F, Mena P, Moreno DA, García-Viguera C (2015) Antinociceptive and anti-inflammatory activities of a pomegranate (Punica granatum L.) extract rich in ellagitannins. Int J Food Sci Nutr 66(4):395–399PubMedCrossRefGoogle Scholar
  69. Goswami SK, Das DK (2009) Resveratrol and chemoprevention. Cancer Lett 284(1):1–6PubMedCrossRefGoogle Scholar
  70. Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3(1):41–51PubMedCrossRefGoogle Scholar
  71. Han QQ, Shen TT, Wang F, Wu PF, Chen JG (2018) Preventive and therapeutic potential of vitamin C in mental disorders. Curr Med Sci 38(1):1–10PubMedCrossRefGoogle Scholar
  72. Hanna L, Monika K, Włodzimierz L, Stępkowski TM, Kamil B (2016) The role of natural polyphenols in cell signaling and cytoprotection against cancer development. J Nutr Biochem 32:1–19CrossRefGoogle Scholar
  73. Hanne M, Lindman AS, Blomfeldt A, Seljeflot I, Pedersen JI (2003) A diet rich in coconut oil reduces diurnal postprandial variations in circulating tissue plasminogen activator antigen and fasting lipoprotein (a) compared with a diet rich in unsaturated fat in women. J Nutr 133(11):3422–3427CrossRefGoogle Scholar
  74. Hasima N, Ozpolat B (2014 Nov) Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer. Cell Death Dis 5(11):e1509PubMedPubMedCentralCrossRefGoogle Scholar
  75. Hasselbalch SG, Knudsen GM, Jakobsen J, Hageman LP, Holm S, Paulson OB (1994) Brain metabolism during short-term starvation in humans. J Cereb Blood Flow Metab 14(1):125–131PubMedCrossRefGoogle Scholar
  76. He X, Huang Y, Li B, Gong CX, Schuchman EH (2010) Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol Aging 31(3):398–408PubMedCrossRefGoogle Scholar
  77. Heilbronn LK, Ravussin E (2003) Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr 78(3):361–369PubMedCrossRefGoogle Scholar
  78. Heo JC, Park CH, Lee HJ, Kim SO, Kim TH, Lee SH (2010) Amelioration of asthmatic inflammation by an aqueous extract of Spinacia oleracea Linn. Int J Mol Med 25(3):409–414PubMedGoogle Scholar
  79. Hewlings S, Kalman D (2017) Curcumin: a review of its’ effects on human health. Foods 6(10):92PubMedCentralCrossRefPubMedGoogle Scholar
  80. Huang CC, Chung CM, Leu HB, Lin LY, Chiu CC, Hsu CY, Chiang CH, Huang PH, Chen TJ, Lin SJ, Chen JW (2014) Diabetes mellitus and the risk of Alzheimer’s disease: a nationwide population-based study. PLoS One 9(1):e87095PubMedPubMedCentralCrossRefGoogle Scholar
  81. Jiraungkoorskul W (2016) Review of neuro-nutrition used as anti-Alzheimer plant, spinach, spinacia oleracea. Pharmacogn Rev 10(20):105PubMedPubMedCentralCrossRefGoogle Scholar
  82. Joseph JA, Arendash G, Gordon M, Diamond D, Shukitt-Hale B, Morgan D, Denisova NA (2003) Blueberry supplementation enhances signaling and prevents behavioral deficits in an Alzheimer disease model. Nutr Neurosci 6(3):153–162PubMedCrossRefGoogle Scholar
  83. Joseph JA, Shukitt-Hale B, Casadesus G (2005) Reversing the deleterious effects of aging on neuronal communication and behavior: beneficial properties of fruit polyphenolic compounds. Am J Clin Nutr 81(1):313S–316SPubMedCrossRefGoogle Scholar
  84. Kalt W, Joseph JA, Shukitt-Hale B (2007) Blueberries and human health: a review of current reseach. J Am Pomol Soc 61(3):151Google Scholar
  85. Kane RL, Butler M, Fink HA, Brasure M, Davila H, Desai P, Jutkowitz E, McCreedy E, Nelson VA, McCarten JR, Calvert C (2017) Interventions to prevent age-related cognitive decline, mild cognitive impairment, and clinical Alzheimer’s-type dementia. Agency for Healthcare Research and Quality, RockvilleCrossRefGoogle Scholar
  86. Karuppagounder SS, Pinto JT, Xu H, Chen HL, Beal MF, Gibson GE (2009) Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem Int 54(2):111–118PubMedCrossRefGoogle Scholar
  87. Kelly E, Vyas P, Weber J (2017) Biochemical properties and neuroprotective effects of compounds in various species of berries. Molecules 23(1):26PubMedCentralCrossRefPubMedGoogle Scholar
  88. Kim H, Kim G, Jang W, Kim SY, Chang N (2014) Association between intake of B vitamins and cognitive function in elderly Koreans with cognitive impairment. Nutr J 13(1):118PubMedPubMedCentralCrossRefGoogle Scholar
  89. Koh E, Charoenprasert S, Mitchell AE (2012) Effect of organic and conventional cropping systems on ascorbic acid, vitamin C, flavonoids, nitrate, and oxalate in 27 varieties of spinach (Spinacia oleracea L.). J Agric Food Chem 60(12):3144–3150PubMedCrossRefGoogle Scholar
  90. Krishna AG, Gaurav R, Singh BA, Kumar PP, Preeti C (2010) Coconut oil: chemistry, production and its applications-a review. Indian Coconut J 53(3):15–27Google Scholar
  91. Kumar N, Wheaton LA, Snow TK, Millard-Stafford M (2016) Carbohydrate ingestion but not mouth rinse maintains sustained attention when fasted. Physiol Behav 153:33–39PubMedCrossRefGoogle Scholar
  92. Lau FC, Shukitt-Hale B, Joseph JA (2007) Nutritional intervention in brain aging. In: Inflammation in the pathogenesis of chronic diseases. Springer, Dordrecht, pp 299–318Google Scholar
  93. Le Couteur DG, Solon-Biet S, Wahl D, Cogger VC, Willcox BJ, Willcox DC, Raubenheimer D, Simpson SJ (2016) New horizons: dietary protein, ageing and the Okinawan ratio. Age Ageing 45(4):443–447PubMedPubMedCentralCrossRefGoogle Scholar
  94. Lee CK, Weindruch R, Prolla TA (2000) Gene-expression profile of the ageing brain in mice. Nat Genet 25(3):294PubMedCrossRefGoogle Scholar
  95. Levine ME, Suarez JA, Brandhorst S, Balasubramanian P, Cheng CW, Madia F, Fontana L, Mirisola MG, Guevara-Aguirre J, Wan J, Passarino G (2014) Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab 19(3):407–417PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lewis ED, Ren Z, DeFuria J, Obin MS, Meydani SN, Wu D (2018) Dietary supplementation with blueberry partially restores T-cell-mediated function in high-fat-diet-induced obese mice. Br J Nutr 119(12):1393–1399PubMedCrossRefGoogle Scholar
  97. Lim SY, Suzuki H (2000) Intakes of dietary docosahexaenoic acid ethyl ester and egg phosphatidylcholine improve maze-learning ability in young and old mice. J Nutr 130(6):1629–1632PubMedCrossRefGoogle Scholar
  98. Locascio JJ, Growdon JH, Corkin S (1995) Cognitive test performance in detecting, staging, and tracking Alzheimer’s disease. Arch Neurol 52(11):1087–1099PubMedCrossRefGoogle Scholar
  99. Lopes MA, Larkins BA (1993) Endosperm origin, development, and function. Plant Cell 5(10):1383PubMedPubMedCentralGoogle Scholar
  100. Lorenzo JM, Pateiro M, Domínguez R, Barba FJ, Putnik P, Kovačević DB, Shpigelman A, Granato D, Franco D (2018) Berries extracts as natural antioxidants in meat products: a review. Food Res Int 106:1095–1104PubMedCrossRefGoogle Scholar
  101. Mahmassani HA, Avendano EE, Raman G, Johnson EJ (2018) Avocado consumption and risk factors for heart disease: a systematic review and meta-analysis. Am J Clin Nutr 107(4):523–536PubMedCrossRefGoogle Scholar
  102. Maioli E, Greci L, Soucek K, Hyzdalova M, Pecorelli A, Fortino V, Valacchi G (2010) Rottlerin inhibits ROS formation and prevents NF κ B activation in MCF-7 and HT-29 cells. Biomed Res Int 3:2009Google Scholar
  103. Mandel SA, Weinreb O, Amit T, Youdim MB (2012) Molecular mechanisms of the neuroprotective/neurorescue action of multi-target green tea polyphenols. Front Biosci (Schol Ed) 4:581–598CrossRefGoogle Scholar
  104. Marina AM, Che Man YB, Nazimah SA, Amin I (2009) Antioxidant capacity and phenolic acids of virgin coconut oil. Int J Food Sci Nutr 60(sup2):114–123PubMedCrossRefGoogle Scholar
  105. Martinez-Gonzalez MA, Martin-Calvo N (2016) Mediterranean diet and life expectancy; beyond olive oil, fruits and vegetables. Curr Opin Clin Nutr Metab Care 19(6):401PubMedPubMedCentralCrossRefGoogle Scholar
  106. Matsuzaki T, Sasaki K, Tanizaki Y, Hata J, Fujimi K, Matsui Y, Sekita A, Suzuki SO, Kanba S, Kiyohara Y, Iwaki T (2010) Insulin resistance is associated with the pathology of Alzheimer disease The Hisayama Study. Neurology 75(9):764–770PubMedCrossRefGoogle Scholar
  107. McGahon BM, Martin DS, Horrobin DF, Lynch MA (1999) Age-related changes in synaptic function: analysis of the effect of dietary supplementation with ω-3 fatty acids. Neuroscience 94(1):305–314PubMedCrossRefGoogle Scholar
  108. McGill CM, Brown TJ, Cheng YY, Fisher LN, Shanmugavelandy SS, Gustafson SJ, Dunlap KL, Lila MA, Kester M, Toran PT, Claxton DF (2018) Therapeutic effect of blueberry extracts for acute myeloid leukemia. Int J Biopharm Sci 1(1)Google Scholar
  109. Miranda A, Gomez-Gaete C, Mennickent S (2017) Role of Mediterranean diet on the prevention of Alzheimer disease. Revista medica de Chile 145(4):501–507PubMedCrossRefGoogle Scholar
  110. Moore K, Hughes CF, Ward M, Hoey L, McNulty H (2018) Diet, nutrition and the ageing brain: current evidence and new directions. Proc Nutr Soc 77(2):152–163PubMedPubMedCentralCrossRefGoogle Scholar
  111. Morgan TE, Xie Z, Goldsmith S, Yoshida TS, Lanzrein AS, Stone D, Rozovsky I, Perry G, Smith MA, Finch CE (1999) The mosaic of brain glial hyperactivity during normal ageing and its attenuation by food restriction. Neuroscience 89(3):687–699PubMedCrossRefGoogle Scholar
  112. Morris AA (2005) Cerebral ketone body metabolism. J Inherit Metab Dis 28(2):109–121PubMedCrossRefGoogle Scholar
  113. Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Aggarwal N, Schneider J, Wilson RS (2003) Dietary fats and the risk of incident Alzheimer disease. Arch Neurol 60(2):194–200PubMedCrossRefGoogle Scholar
  114. Nakagawa S, Lagisz M, Hector KL, Spencer HG (2012) Comparative and meta-analytic insights into life extension via dietary restriction. Aging Cell 11(3):401–409PubMedCrossRefGoogle Scholar
  115. Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y (1996) Scavenging effects of tea catechins and their derivatives on 1, 1-diphenyl-2-picrylhydrazyl radical. Free Radic Biol Med 21(6):895–902PubMedPubMedCentralCrossRefGoogle Scholar
  116. Nile SH, Park SW (2014) Edible berries: bioactive components and their effect on human health. Nutrition 30(2):134–144PubMedCrossRefGoogle Scholar
  117. Nishida Y, Yokota T, Takahashi T, Uchihara T, Jishage KI, Mizusawa H (2006) Deletion of vitamin E enhances phenotype of Alzheimer disease model mouse. Biochem Biophys Res Commun 350(3):530–536PubMedCrossRefGoogle Scholar
  118. Olgun A, Akman S, Serdar MA, Kutluay T (2002) Oxidative phosphorylation enzyme complexes in caloric restriction. Exp Gerontol 37(5):639–645PubMedCrossRefGoogle Scholar
  119. Olivera-Pueyo J, Pelegrín-Valero C (2017 Sep 2) Dietary supplements for cognitive impairment. Actas espanolas de psiquiatria, 45Google Scholar
  120. Opoka W, Jakubowska M, Baś B, Sowa-Kućma M (2011) Development and validation of an anodic stripping voltammetric method for determination of Zn2+ ions in brain microdialysate samples. Biol Trace Elem Res 142(3):671–682PubMedCrossRefGoogle Scholar
  121. Ouellet M, Emond V, Chen CT, Julien C, Bourasset F, Oddo S, LaFerla F, Bazinet RP, Calon F (2009) Diffusion of docosahexaenoic and eicosapentaenoic acids through the blood–brain barrier: an in situ cerebral perfusion study. Neurochem Int 55(7):476–482PubMedCrossRefGoogle Scholar
  122. Ozawa M, Ninomiya T, Ohara T, Hirakawa Y, Doi Y, Hata J, Uchida K, Shirota T, Kitazono T, Kiyohara Y (2012) Self-reported dietary intake of potassium, calcium, and magnesium and risk of dementia in the Japanese: the Hisayama Study. J Am Geriatr Soc 60(8):1515–1520PubMedCrossRefGoogle Scholar
  123. Page KA, Williamson A, Yu N, McNay EC, Dzuira J, McCrimmon RJ, Sherwin RS (2009) Medium-chain fatty acids improve cognitive function in intensively treated type 1 diabetic patients and support in vitro synaptic transmission during acute hypoglycemia. Diabetes 58(5):1237–1244PubMedPubMedCentralCrossRefGoogle Scholar
  124. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47PubMedPubMedCentralCrossRefGoogle Scholar
  125. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2(5):270–278CrossRefGoogle Scholar
  126. Park E, Edirisinghe I, Burton-Freeman B (2018) Avocado fruit on postprandial markers of cardio-metabolic risk: a randomized controlled dose response Trial in overweight and obese men and women. Nutrients 10(9):1287PubMedCentralCrossRefPubMedGoogle Scholar
  127. Parkinson L, Cicerale S (2016) The health benefiting mechanisms of virgin olive oil phenolic compounds. Molecules 21(12):1734PubMedCentralCrossRefPubMedGoogle Scholar
  128. Parretti HM, Aveyard P, Blannin A, Clifford SJ, Coleman SJ, Roalfe A, Daley AJ (2015) Efficacy of water preloading before main meals as a strategy for weight loss in primary care patients with obesity: RCT. Obesity 23(9):1785–1791PubMedCrossRefGoogle Scholar
  129. Pavlica S, Gebhardt R (2010) Comparison of uptake and neuroprotective potential of seven zinc-salts. Neurochem Int 56(1):84–93PubMedCrossRefGoogle Scholar
  130. Perrin R, Briançon S, Jeandel C, Artur Y, Minn A, Penin F, Siest G (1990) Blood activity of Cu/Zn superoxide dismutase, glutathione peroxidase and catalase in Alzheimer’s disease: a case-control study. Gerontology 36(5–6):306–313PubMedCrossRefGoogle Scholar
  131. Perron NR, Hodges JN, Jenkins M, Brumaghim JL (2008) Predicting how polyphenol antioxidants prevent DNA damage by binding to iron. Inorg Chem 47(14):6153–6161PubMedCrossRefGoogle Scholar
  132. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56(3):303–308CrossRefGoogle Scholar
  133. Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, DeKosky ST (2001) Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56(9):1133–1142PubMedCrossRefGoogle Scholar
  134. Piazza-Gardner AK, Gaffud TJ, Barry AE (2013) The impact of alcohol on Alzheimer’s disease: a systematic review. Aging Ment Health 17(2):133–146PubMedCrossRefGoogle Scholar
  135. Pistollato F, Sumalla Cano S, Elio I, Masias Vergara M, Giampieri F, Battino M (2016) Associations between sleep, cortisol regulation, and diet: possible implications for the risk of Alzheimer disease. Adv Nutr 7(4):679–689PubMedPubMedCentralCrossRefGoogle Scholar
  136. Pitozzi V, Jacomelli M, Zaid M, Luceri C, Bigagli E, Lodovici M, Ghelardini C, Vivoli E, Norcini M, Gianfriddo M, Esposto S (2010) Effects of dietary extra-virgin olive oil on behaviour and brain biochemical parameters in ageing rats. Br J Nutr 103(11):1674–1683PubMedCrossRefGoogle Scholar
  137. Poulose SM, Bielinski DF, Carrihill-Knoll KL, Rabin BM, Shukitt-Hale B (2014) Protective effects of blueberry-and strawberry diets on neuronal stress following exposure to 56Fe particles. Brain Res 1593:9–18PubMedCrossRefGoogle Scholar
  138. Preston GA (1986) Dementia in elderly adults: prevalence and institutionalization. J Gerontol 41(2):261–267PubMedCrossRefGoogle Scholar
  139. Qosa H, Mohamed LA, Batarseh YS, Alqahtani S, Ibrahim B, LeVine H III, Keller JN, Kaddoumi A (2015) Extra-virgin olive oil attenuates amyloid-β and tau pathologies in the brains of TgSwDI mice. J Nutr Biochem 26(12):1479–1490PubMedPubMedCentralCrossRefGoogle Scholar
  140. Rapp PR, Gallagher M (1996) Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proc Natl Acad Sci 93(18):9926–9930PubMedCrossRefGoogle Scholar
  141. Reinikainen KJ, Paljarvi L, Halonen T, Malminen O, Kosma VM, Laakso M, Riekkinen PJ (1988) Dopaminergic system and monoamine oxidase-B activity in Alzheimer’s disease. Neurobiol Aging 9:245–252PubMedCrossRefGoogle Scholar
  142. Rice-Evans CA, Miller NJ (1996) Antioxidant activities of flavonoids as bioactive components of food. Biochem Soc Trans 24(3):790–795PubMedCrossRefGoogle Scholar
  143. Roberts JL, Moreau R (2016) Functional properties of spinach (Spinacia oleracea L.) phytochemicals and bioactives. Food Funct 7(8):3337–3353PubMedCrossRefGoogle Scholar
  144. Roberts BR, Ryan TM, Bush AI, Masters CL, Duce JA (2012) The role of metallobiology and amyloid-β peptides in Alzheimer’s disease. J Neurochem 120:149–166PubMedCrossRefGoogle Scholar
  145. Rodrigues GP, Cozzolino SM, do Nascimento Marreiro D, Caldas DR, da Silva KG, de Sousa Almondes KG, Neto JM, Pimentel JA, de Carvalho CM, do Nascimento Nogueira N (2017) Mineral status and superoxide dismutase enzyme activity in Alzheimer’s disease. J Trace Elem Med Biol 44:83–87PubMedCrossRefGoogle Scholar
  146. Rodríguez-Morató J, Boronat A, Kotronoulas A, Pujadas M, Pastor A, Olesti E, Perez-Mana C, Khymenets O, Fitó M, Farré M, de la Torre R (2016) Metabolic disposition and biological significance of simple phenols of dietary origin: hydroxytyrosol and tyrosol. Drug Metab Rev 48(2):218–236PubMedCrossRefGoogle Scholar
  147. Routray W, Orsat V (2011) Blueberries and their anthocyanins: factors affecting biosynthesis and properties. Compr Rev Food Sci Food Saf 10(6):303–320CrossRefGoogle Scholar
  148. Rowe JW, Kahn RL (1997) Successful aging. The Gerontologist 37(4):433–440PubMedCrossRefGoogle Scholar
  149. Ryu SY, Coutu JP, Rosas HD, Salat DH (2014) Effects of insulin resistance on white matter microstructure in middle-aged and older adults. Neurology 82(21):1862–1870PubMedPubMedCentralCrossRefGoogle Scholar
  150. Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, Riceevans C (1995) Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys 322(2):339–346PubMedCrossRefGoogle Scholar
  151. Salas-Salvadó J, Bulló M, Babio N, Martínez-González MÁ, Ibarrola-Jurado N, Basora J, Estruch R, Covas MI, Corella D, Arós F, Ruiz-Gutiérrez V (2011) Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial. Diabetes Care 34(1):14–19PubMedPubMedCentralCrossRefGoogle Scholar
  152. Sara S, Costa EM, Mariana V, Morais RM, Conceição C, Manuela P (2018) Health promoting properties of blueberries: a review. Crit Rev Food Sci Nutr 66:1–20Google Scholar
  153. Sastre M, Klockgether T, Heneka MT (2006) Contribution of inflammatory processes to Alzheimer’s disease: molecular mechanisms. Int J Dev Neurosci 24(2-3):167–176PubMedCrossRefGoogle Scholar
  154. Saucedo-Pompa S, Torres-Castillo JA, Castro-López C, Rojas R, Sánchez-Alejo EJ, Ngangyo-Heya M, Martínez-Ávila GC (2018) Moringa plants: bioactive compounds and promising applications in food products. Food Res Int 26Google Scholar
  155. Schrag M, Mueller C, Oyoyo U, Smith MA, Kirsch WM (2011) Iron, zinc and copper in the Alzheimer’s disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. Prog Neurobiol 94(3):296–306PubMedPubMedCentralCrossRefGoogle Scholar
  156. Selvaraju TR, Khaza’ai H, Vidyadaran S, Mutalib MS, Vasudevan R (2014) The neuroprotective effects of tocotrienol rich fraction and alpha tocopherol against glutamate injury in astrocytes. Bosn J Basic Med Sci 14(4):195PubMedPubMedCentralCrossRefGoogle Scholar
  157. Seneff S, Wainwright G, Mascitelli L (2011) Nutrition and Alzheimer’s disease: the detrimental role of a high carbohydrate diet. Eur J Intern Med 22(2):134–140CrossRefGoogle Scholar
  158. Shukitt-Hale B, Lau FC, Joseph JA (2008) Berry fruit supplementation and the aging brain. J Agric Food Chem 56(3):636–641PubMedCrossRefPubMedCentralGoogle Scholar
  159. Sikora E, Scapagnini G, Barbagallo M (2010) Curcumin, inflammation, ageing and age-related diseases. Immun Ageing 7(1):1PubMedPubMedCentralCrossRefGoogle Scholar
  160. Simpson SJ, Raubenheimer D (2005) Obesity: the protein leverage hypothesis. Obes Rev 6(2):133–142PubMedCrossRefPubMedCentralGoogle Scholar
  161. Singletary K (2010) Ginger: an overview of health benefits. Nutr Today 45(4):171–183CrossRefGoogle Scholar
  162. Small SA, Stern Y, Tang M, Mayeux R (1999) Selective decline in memory function among healthy elderly. Neurology 52(7):1392PubMedCrossRefGoogle Scholar
  163. Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273(5271):59–63PubMedPubMedCentralCrossRefGoogle Scholar
  164. Sokoloff L (1999) Energetics of functional activation in neural tissues. Neurochem Res 24(2):321–329PubMedCrossRefGoogle Scholar
  165. Stefani M, Rigacci S (2014) Beneficial properties of natural phenols: highlight on protection against pathological conditions associated with amyloid aggregation. Biofactors 40(5):482–493PubMedCrossRefGoogle Scholar
  166. Stefanidis A, Watt MJ (2012) Does too much sugar make for lost memories? J Physiol 590(16):3633–3634PubMedPubMedCentralCrossRefGoogle Scholar
  167. Stowe CB (2011) The effects of pomegranate juice consumption on blood pressure and cardiovascular health. Complement Ther Clin Pract 17(2):113–115PubMedCrossRefGoogle Scholar
  168. Subash S, Essa MM, Braidy N, Awlad-Thani K, Vaishnav R, Al-Adawi S, Al-Asmi A, Guillemin GJ (2015) Diet rich in date palm fruits improves memory, learning and reduces beta amyloid in transgenic mouse model of Alzheimer’s disease. J Ayurv Integr Med 6(2):111CrossRefGoogle Scholar
  169. Sumithran P, Prendergast LA, Delbridge E, Purcell K, Shulkes A, Kriketos A, Proietto J (2013) Ketosis and appetite-mediating nutrients and hormones after weight loss. Eur J Clin Nutr 67(7):759PubMedCrossRefGoogle Scholar
  170. Swaminathan A, Jicha GA (2014) Nutrition and prevention of Alzheimer’s dementia. Front Aging Neurosci 6:282PubMedPubMedCentralCrossRefGoogle Scholar
  171. Szajdek A, Borowska EJ (2008) Bioactive compounds and health-promoting properties of berry fruits: a review. Plant Foods Hum Nutr 63(4):147–156PubMedCrossRefGoogle Scholar
  172. Tan L, Yang H, Pang W, Li H, Liu W, Sun S, Song N, Zhang W, Jiang Y (2017) Investigation on the role of BDNF in the benefits of blueberry extracts for the improvement of learning and memory in Alzheimer’s disease mouse model. J Alzheimers Dis 56(2):629–640PubMedCrossRefGoogle Scholar
  173. Taylor MK, Sullivan DK, Swerdlow RH, Vidoni ED, Morris JK, Mahnken JD, Burns JM (2017) A high-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults. Am J Clin Nutr 106(6):1463–1470PubMedPubMedCentralCrossRefGoogle Scholar
  174. Tejada S, Setzer W, Daglia M, Fazel Nabavi S, Sureda A, Braidy N, Gortzi O, Mohammad Nabavi S (2017) Neuroprotective effects of Ellagitannins: a brief review. Curr Drug Targets 18(13):1518–1528PubMedGoogle Scholar
  175. Thornton SN (2014) Diabetes and hypertension, as well as obesity and Alzheimer’s disease, are linked to hypohydration-induced lower brain volume. Front Aging Neurosci 6:279PubMedPubMedCentralCrossRefGoogle Scholar
  176. Tsai CW, Chen HW, Sheen LY, Lii CK (2012) Garlic: Health benefits and actions. Biomedicine 2(1):17–29CrossRefGoogle Scholar
  177. Tu SH, Chen LC, Ho YS (2017) An apple a day to prevent cancer formation: reducing cancer risk with flavonoids. J Food Drug Anal 25(1):119–124PubMedCrossRefGoogle Scholar
  178. Tuck KL, Hayball PJ (2002) Major phenolic compounds in olive oil: metabolism and health effects. J Nutr Biochem 13(11):636–644PubMedCrossRefGoogle Scholar
  179. Ude C, Schubert-Zsilavecz M, Wurglics M (2013) Ginkgo biloba extracts: a review of the pharmacokinetics of the active ingredients. Clin Pharmacokinet 52(9):727–749CrossRefGoogle Scholar
  180. Uylings HB, De Brabander JM (2002) Neuronal changes in normal human aging and Alzheimer’s disease. Brain Cogn 49(3):268–276PubMedCrossRefGoogle Scholar
  181. Valls-Pedret C, Lamuela-Raventós RM, Medina-Remón A, Quintana M, Corella D, Pintó X, Martínez-González MÁ, Estruch R, Ros E (2012) Polyphenol-rich foods in the Mediterranean diet are associated with better cognitive function in elderly subjects at high cardiovascular risk. J Alzheimers Dis 29(4):773–782PubMedCrossRefGoogle Scholar
  182. Vandenberghe R, Tournoy J (2005) Cognitive aging and Alzheimer’s disease. Postgrad Med J 81(956):343–352PubMedPubMedCentralCrossRefGoogle Scholar
  183. Vislocky LM, Fernandez ML (2010) Biomedical effects of grape products. Nutr Rev 68(11):656–670PubMedCrossRefGoogle Scholar
  184. Volpe SL (2013) Magnesium in disease prevention and overall health. Adv Nutr 4(3):378S–383SPubMedPubMedCentralCrossRefGoogle Scholar
  185. Wade AT, Davis CR, Dyer KA, Hodgson JM, Woodman RJ, Keage HA, Murphy KJ (2017) A Mediterranean diet to improve cardiovascular and cognitive health: protocol for a randomised controlled intervention study. Nutrients 9(2):145PubMedCentralCrossRefPubMedGoogle Scholar
  186. Wade AT, Davis CR, Dyer KA, Hodgson JM, Woodman RJ, Keage HA, Murphy KJ (2018) A Mediterranean diet supplemented with dairy foods improves mood and processing speed in an Australian sample: results from the MedDairy randomized controlled trial. Nutr Neurosci 9:1–3CrossRefGoogle Scholar
  187. Wang ZY, Huang MT, Lou YR, Xie JG, Reuhl KR, Newmark HL, Ho CT, Yang CS, Conney AH (1994) Inhibitory effects of black tea, green tea, decaffeinated black tea, and decaffeinated green tea on ultraviolet B light-induced skin carcinogenesis in 7, 12-dimethylbenz [a] anthracene-initiated SKH-1 mice. Cancer Res 54(13):3428–3435PubMedGoogle Scholar
  188. Wang D, Özen C, Abu-Reidah IM, Chigurupati S, Patra JK, Horbanczuk JO, Jóźwik A, Tzvetkov NT, Uhrin P, Atanasov AG (2018) Vasculoprotective effects of pomegranate (Punica granatum L.). Front Pharmacol 9Google Scholar
  189. Wei K, Luchtman D, Song C (2008) Eicosapentaenoic acid (EPA) increases cell viability and expression of neurotrophin receptors in retinoic acid and brain-derived neurotrophic factor differentiated SH-SY5Y cells. Eur J Nutr 47(2):104–113CrossRefGoogle Scholar
  190. Weiser M, Butt C, Mohajeri M (2016) Docosahexaenoic acid and cognition throughout the lifespan. Nutrients 8(2):99PubMedPubMedCentralCrossRefGoogle Scholar
  191. Willett WC, Sacks F, Trichopoulou A, Drescher G, Ferro-Luzzi A, Helsing E, Trichopoulos D (1995) Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr 61(6):1402S–1406SPubMedCrossRefGoogle Scholar
  192. Winter AN, Ross EK, Wilkins HM, Stankiewicz TR, Wallace T, Miller K, Linseman DA (2018) An anthocyanin-enriched extract from strawberries delays disease onset and extends survival in the hSOD1G93A mouse model of amyotrophic lateral sclerosis. Nutr Neurosci 21(6):414–426PubMedCrossRefGoogle Scholar
  193. Yang B, Kortesniemi M (2015) Clinical evidence on potential health benefits of berries. Curr Opin Food Sci 2:36–42CrossRefGoogle Scholar
  194. Yang DS, Stavrides P, Mohan PS, Kaushik S, Kumar A, Ohno M, Schmidt SD, Wesson D, Bandyopadhyay U, Jiang Y, Pawlik M (2010) Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer’s disease ameliorates amyloid pathologies and memory deficits. Brain 134(1):258–277PubMedCentralCrossRefPubMedGoogle Scholar
  195. Yavuz BB, Cankurtaran M, Haznedaroglu IC, Halil M, Ulger Z, Altun B, Ariogul S (2012) Iron deficiency can cause cognitive impairment in geriatric patients. J Nutr Health Aging 16(3):220–224PubMedCrossRefGoogle Scholar
  196. Yusufov M, Weyandt LL, Piryatinsky I (2017) Alzheimer’s disease and diet: a systematic review. Int J Neurosci 127(2):161–175PubMedCrossRefGoogle Scholar
  197. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863PubMedCrossRefGoogle Scholar
  198. Zeng LF, Cao Y, Liang WX, Bao WH, Pan JK, Wang Q, Liu J, Liang HD, Xie H, Chai YT, Guan ZT (2017) An exploration of the role of a fish-oriented diet in cognitive decline: a systematic review of the literature. Oncotarget 8(24):39877PubMedPubMedCentralCrossRefGoogle Scholar
  199. Zhang M, Zhang X, Ho CT, Huang Q (2018) Chemistry and healthy effect of tea polyphenol,(-)-epigallocatechin 3-O-(3-O-methyl) gallate. J Agric Food Chem 67:5374–5378PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Poonam Sharma
    • 1
  • Vivek Kumar Gaur
    • 2
    • 3
  • Janmejai Kumar Srivastava
    • 3
    Email author
  1. 1.Department of BioengineeringIntegral UniversityLucknowIndia
  2. 2.Environmental Biotechnology Laboratory, Environmental Toxicology GroupCSIR-Indian Institute of Toxicology ResearchLucknowIndia
  3. 3.Amity Institute of BiotechnologyAmity UniversityLucknowIndia

Personalised recommendations