Advertisement

Multilocus Genetic Characterization of Phytoplasmas

  • Marta Martini
  • Fabio Quaglino
  • Assunta Bertaccini
Chapter

Abstract

Classification of phytoplasmas into 16S ribosomal groups and subgroups and ‘Candidatus Phytoplasma’ species designation have been primarily based on the conserved 16S rRNA gene. However, distinctions among closely related ‘Ca. Phytoplasma’ species and strains based on 16S rRNA gene alone have limitations imposed by the high degree of rRNA nucleotide sequence conservation across diverse phytoplasma lineages and by the presence in a phytoplasma genome of two, sometimes sequence heterogeneous, copies of this gene. Thus, in recent years, moderately conserved genes have been used as additional genetic markers with the aim to enhance the resolving power in delineating distinct phytoplasma strains among members of some 16S ribosomal subgroups. The present chapter is divided in two parts: the first part describes the non-ribosomal single-copy genes less conserved (housekeeping genes) such as ribosomal protein (rp), secY, secA, rpoB, tuf, and groEL genes, which have been extensively used for differentiation across the majority of phytoplasmas; the second part describes the differentiation of phytoplasmas in the diverse ribosomal groups using multiple genes including housekeeping genes and variable genes encoding surface proteins.

Keywords

Molecular differentiation Genetic markers Non-ribosomal genes Variable genes RFLP analysis Sequencing 

References

  1. Abeysinghe S, Abeysinghe PD, Kanatiwela-de Silva C, Udagama P, Warawichanee K, Aljafar N, Praphat K, Dickinson M (2016) Refinement of the taxonomic structure of 16SrXI and 16SrXIV phytoplasmas of gramineous plants using multilocus sequence typing. Plant Disease 100, 2001–2010.PubMedPubMedCentralGoogle Scholar
  2. Al-Subhi A, Hogenhout SA, Al-Yahyai RA, Al-Sadi AM (2017) Classification of a new phytoplasmas subgroup 16SrII-W associated with Crotalaria witches’ broom diseases in Oman based on multigene sequence analysis. BMC Microbiology 17, 221.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alvarez E, Mejía JF, Llano GA, Loke JB, Calari A, Duduk B, Bertaccini A (2009) Detection and molecular characterization of a phytoplasma associated with frogskin disease in Cassava. Plant Disease 93, 1139–1145.PubMedPubMedCentralGoogle Scholar
  4. Alvarez E, Mejia JF, Contaldo N, Paltrinieri S, Duduk B, Bertaccini A (2014) ‘Candidatus Phytoplasma asteris’ strains associated with oil palm lethal wilt in Colombia. Plant Disease 98, 311–318.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Andersen MT, Newcomb RD, Liefting LW, Beever RE (2006) Phylogenetic analysis of ‘Candidatus Phytoplasma australiense’ reveals distinct populations in New Zealand. Phytopathology 96, 838–845.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Angelini E, Clair D, Borgo M, Bertaccini A, Boudon-Padieu E (2001) “Flavescence dorée” in France and Italy – occurrence of closely related phytoplasma isolates and their near relationships to Palatinate grapevine yellows and an alder yellows phytoplasma. Vitis 40, 79–86.Google Scholar
  7. Angelini E, Constable F, Duduk B, Fiore N, Quaglino F, Bertaccini A (2018) Grapevine phytoplasmas. In: Phytoplasmas: Plant Pathogenic Bacteria-I. Characterization and Epidemiology of Phytoplasma-Associated Diseases. Eds GP Rao, A Bertaccini, N Fiore, L Liefting. Chapter 5. Springer, Singapore, 123–151 pp.CrossRefGoogle Scholar
  8. Arnaud G, Malembic-Maher S, Salar P, Maixner M, Marcone C, Boudon-Padieu E, Foissac X (2007) Multilocus sequence typing confirms the close genetic inter-relatedness between three distinct “flavescence dorée” phytoplasma strain clusters and group 16SrV phytoplasmas infecting grapevine and alder in Europe. Applied and Environmental Microbiology 73, 4001–4010.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Arocha-Rosete Y, Diallo HA, Konan Konan JL, Assiri PK, Séka K, Daniel KK, Toualy MN, Koffi EK, Daramcoum MP, Beugré NI, Ouattara VM, Allou K, Fursy-Rodelec ND, Doudjo ON, Yankey N, Dery S, Maharaj A, Saleh M, Summerbell R, Contaldo N, Paltrinieri S, Bertaccini A, Scott J (2016) Detection and identification of the coconut lethal yellowing phytoplasma in weeds growing in coconut farms in Côte d’Ivoire. Canadian Journal of Plant Pathology 38, 164–173.CrossRefGoogle Scholar
  10. Arocha-Rosete Y, Atta Diallo H, Konan Konan JL, Yankey N, Saleh M, Pilet F, Contaldo N, Paltrinieri S, Bertaccini A, Scott J (2017) Detection and differentiation of the coconut lethal yellowing phytoplasma in coconut-growing villages of Grand-Lahou, Côte d’Ivoire. Annals of Applied Biology 170, 333–347.CrossRefGoogle Scholar
  11. Atanasova B, Spasov D, Jakovljević M, Jović J, Krstić O, Mitrović M, Cvrković T (2014) First report of alder yellows phytoplasma associated with common alder (Alnus glutinosa) in the Republic of Macedonia. Plant Disease 98, 1268.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Atanasova B, Jakovljević M, Spasov D, Jović J, Mitrović M, Toševski I, Cvrković T (2015) The molecular epidemiology of “bois noir” grapevine yellows caused by ‘Candidatus Phytoplasma solani’in the Republic of Macedonia. European Journal of Plant Pathology 142, 759–770.CrossRefGoogle Scholar
  13. Aryan A, Brader G, Mörtel J, Pastar M, Riedle-Bauer M (2014) An abundant ‘Candidatus Phytoplasma solani’ tuf-b strain is associated with grapevine, stinging nettle and Hyalesthes obsoletus. European Journal of Plant Pathology 140, 213–227.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bagadia PG, Polashock J, Bottner-Parker KD, Zhao Y, Davis RE, Lee I-M (2013) Characterization and molecular differentiation of 16SrI-E and 16SrIX-E phytoplasmas associated with blueberry stunt disease in New Jersey. Molecular and Cellular Probes 27, 90–97.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bai X, Zhang J, Ewing A, Miller SA, Radek AJ, Shevchenko DV, Tsukerman K, Walunas T, Lapidus A, Campbell JW, Hogenhout SA (2006) Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. Journal of Bacteriology 188, 3682–3696.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Balakishiyeva G, Bayramova J, Mammadov A, Salar P, Danet J-L, Ember I, Verdin E, Foissac X, Huseynova I (2018) Important genetic diversity of ‘Candidatus Phytoplasma solani’-related strains associated with “bois noir” grapevine yellows and planthoppers in Azerbaijan. European Journal of Plant Pathology 151, 937–946.CrossRefGoogle Scholar
  17. Bekele B, Abeysinghe A, Hoat T, Hodgetts J, Dickinson M (2011) Development of specific secA-based diagnostics for the 16SrXI and 16SrXIV phytoplasmas of the Gramineae. Bulletin of Insectology 64(Supplement), S15–S16.Google Scholar
  18. Belli G, Bianco PA, Conti M (2010) Grapevine yellows in Italy: past, present and future. Journal of Plant Pathology 92, 303–326.Google Scholar
  19. Bertaccini A (2015) Phytoplasma research between past and future: what directions? Phytopathogenic Mollicutes 5(1-Supplement), S1–S4.CrossRefGoogle Scholar
  20. Bertaccini A, Lee I-M (2018). Phytoplasmas: an update. In: Phytoplasmas: Plant Pathogenic Bacteria-I. Characterization and Epidemiology of Phytoplasma-Associated Diseases. Ed GP Rao, A Bertaccini, N Fiore, L Liefting. Chapter 1. Springer, Singapore, 1–29 pp.Google Scholar
  21. Bila J, Mondjana A, Samils B, Högberg N (2015) High diversity, expanding populations and purifying selection in phytoplasmas causing coconut lethal yellowing in Mozambique. Plant Pathology 64, 597–604.CrossRefGoogle Scholar
  22. Bohunická M, Valentová L, Suchá J, Nečas T, Eichmeier A, Kiss T, Cmejla R (2018) Identification of 17 ‘Candidatus Phytoplasma pyri’ genotypes based on the diversity of the imp gene sequence. Plant Pathology 67, 971–977.CrossRefGoogle Scholar
  23. Botti S, Bertaccini A (2003) Variability and functional role of chromosomal sequences in phytoplasmas of 16SrI-B subgroup (aster yellows and related strains). Journal of Applied Microbiology 94, 103–110.CrossRefGoogle Scholar
  24. Botti S, Bertaccini A (2006) FD-related phytoplasmas and their association with epidemic and non epidemic situations in Tuscany (Italy). 15th ICVG, Stellenbosch, South Africa, 3–7 April, 163–164.Google Scholar
  25. Botti S, Bertaccini A (2007) Grapevine yellows in Northern Italy: molecular identification of “flavescence dorée” phytoplasma strains and of “bois noir” phytoplasmas. Journal of Applied Microbiology 103, 2325–2330.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Çağlar BK, Satar S, Bertaccini A, Elbeaino T (2019) Detection and seed transmission of Bermudagrass phytoplasma in maize in Turkey. Journal of Phytopathology, 167, 248–255.CrossRefGoogle Scholar
  27. Cai H, Wei W, Davis RE, Chen H, Zhao Y (2008) Genetic diversity among phytoplasmas infecting Opuntia species: virtual RFLP analysis identifies new subgroups in the peanut witches’ broom phytoplasma group. International Journal Systematic and Evolutionary Microbiology 58, 1448–1457.CrossRefGoogle Scholar
  28. Cai H, Wang L, Mu W, Wan Q, Wei W, Davis RE, Chen H, Zhao Y (2016) Multilocus genotyping of a ‘Candidatus Phytoplasma aurantifolia’-related strain associated with cauliflower phyllody disease in China. Annals of Applied Biology 169, 64–74.CrossRefGoogle Scholar
  29. Cainelli C, Bisognin C, Vindimian ME, Grando MS (2004) Genetic variability of phytoplasmas detected in the apple growing area of Trentino (North Italy). Acta Horticulturae 657, 425–430.CrossRefGoogle Scholar
  30. Casati P, Quaglino F, Stern AR, Tedeschi R, Alma A, Bianco PA (2011) Multiple gene analyses reveal extensive genetic diversity among ‘Candidatus Phytoplasma mali’ populations. Annals of Applied Biology 158, 257–266.CrossRefGoogle Scholar
  31. Casati P, Jermini M, Quaglino F, Corbani G, Schaerer S, Passera A, Bianco PA, Rigamonti IE (2017) New insights on “flavescence dorée” phytoplasma ecology in the vineyard agro-ecosystem in southern Switzerland. Annals of Applied Biology 171, 37–51.CrossRefGoogle Scholar
  32. Cheng M, Dong J, Lee I-M, Bottner-Parker KD, Zhao Y, Davis RE, Laski PJ, Zhang Z, McBeath JH (2015) Group 16SrXII phytoplasma strains, including subgroup 16SrXII-E (‘Candidatus Phytoplasma fragariae’) and a new subgroup, 16SrXII-I, are associated with diseased potatoes (Solanum tuberosum) in the Yunnan and Inner Mongolia regions of China. European Journal of Plant Pathology 142, 305–318.CrossRefGoogle Scholar
  33. Cieślińska M, Hennig E, Kruczyńska D, Bertaccini A (2015) Genetic diversity of ‘Candidatus Phytoplasma mali’ strains in Poland. Phytopathologia Mediterranea 54, 477–487.Google Scholar
  34. Cimerman A, Pacifico D, Salar P, Marzachì C, Foissac X (2009) Striking diversity of vmp1, a variable gene encoding a putative membrane protein of the “stolbur” phytoplasma. Applied Environmental Microbiology 75, 2951–2957.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Clark GW, Tillier ER (2010) Loss and gain of GroEL in the Mollicutes. Biochemistry and Cell Biology 88, 185–194.Google Scholar
  36. Cvrković T, Jović J, Mitrović M, Krstić O, Toševski I (2014) Experimental and molecular evidence of Reptalus panzeri as a natural vector of “bois noir”. Plant Pathology 63, 42–53.CrossRefGoogle Scholar
  37. Contaldo N, Canel A, Makarova O, Paltrinieri S, Bertaccini A, Nicolaisen M (2011). Use of a fragment of the tuf gene for phytoplasma 16Sr group/subgroup differentiation. Bulletin of Insectology 64(Supplement), S45–S46.Google Scholar
  38. Contaldo N, Mejia JF, Paltrinieri S, Calari A, Bertaccini A (2012) Identification and groEL gene characterization of green petal phytoplasma infecting strawberry in Italy. Phytopathogenic Mollicutes 2, 59–62.CrossRefGoogle Scholar
  39. Contaldo N, Paltrinieri S, Makarova O, Bertaccini A, Nicolaisen M (2015) Q-bank phytoplasma: a DNA barcoding tool for phytoplasma identification. In: Plant Pathology. Humana Press, New York, NewYork, United States of America, 123–135.CrossRefGoogle Scholar
  40. Contaldo N., Satta E, Zambon Y, Paltrinieri S, Bertaccini A (2016) Development and evaluation of different complex media for phytoplasma isolation and growth. Journal of Microbiological Methods 127, 105–110.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Daire X, Clair D, Larrue J, Boudon-Padieu E (1997) Detection and differentiation of grapevine yellows phytoplasmas belonging to elm yellows group and to the “stolbur” subgroup by PCR amplification of non-ribosomal DNA. European Journal of Plant Pathology 103, 507–514.CrossRefGoogle Scholar
  42. Danet J-L, Bonnet P, Jarausch W, Carraro L, Skoric D, Labonne G, Foissac X (2007) Imp and secY, two new markers for MLST (multilocus sequence typing) in the 16SrX phytoplasma taxonomic group. Bulletin of Insectology 60, 339–340.Google Scholar
  43. Danet J-L, Balakishiyeva G, Cimerman A, Sauvion N, Marie-Jeanne V, Labonne G, Lavina A, Batlle A, Krizanac I, Skoric D, Ermacora P, Ulubas Serce C, Caglayan K, Jarausch W, Foissac X (2011) Multilocus sequence analysis reveals the genetic diversity of European fruit tree phytoplasmas and supports the existence of inter-species recombination. Microbiology 157, 438–450.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Davino S, Calari A, Davino M, Bertaccini A, Bellardi MG (2007) Virescence of tenweeks stock associated to phytoplasma. infection in Sicily. Bulletin of Insectology 60, 279–280.Google Scholar
  45. Davis RE, Dally EL, Gundersen DE, Lee I-M, Habili N (1997) ‘Candidatus Phytoplasma australiense’, a new phytoplasma taxon associated with Australian grapevine yellows. International Journal of Systematic Bacteriology 47, 262–269.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Davis RE, Zhao Y, Dally EL, Jomantiene R, Lee I-M, Wei W, Kitajima EW (2012) ‘Candidatus Phytoplasma sudamericanum’, a novel taxon, and strain PassWB-Br4, a new subgroup 16SrIII-V phytoplasma, from diseased passion fruit (Passiflora edulis f. flavicarpa Deg.). International Journal Systematic and Evolutionary Microbiology 62, 984–989.CrossRefGoogle Scholar
  47. Davis RE, Zhao Y, Dally EL, Lee I-M, Jomantiene R, Douglas SM (2013) ‘Candidatus Phytoplasma pruni’, a novel taxon associated with X-disease of stone fruits, Prunus spp.: multilocus characterization based on 16S rRNA, secY, and ribosomal protein genes. International Journal Systematic and Evolutionary Microbiology 63, 766–776.CrossRefGoogle Scholar
  48. Davis RE, Dally EL, Zhao Y, Lee I-M, Wei W, Wolf TK, Beanland L, LeDoux DG, Johnson DA, Fiola JA, Walter-Peterson H, Dami I, Chien M (2015) Unraveling the etiology of north American grapevine yellows (NAGY): novel NAGY phytoplasma sequevars related to ‘Candidatus Phytoplasma pruni’. Plant Disease 99, 1087–1097.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Davis RE, Harrison NA, Zhao Y, Wei W, Dally EL (2016) ‘Candidatus Phytoplasma hispanicum’, a novel taxon associated with Mexican periwinkle virescence disease of Catharanthus roseus. International Journal Systematic and Evolutionary Microbiology 66, 3463–3467.CrossRefGoogle Scholar
  50. Dickinson M, Hodgetts J (2013) PCR analysis of phytoplasmas based on the secA gene. In: Phytoplasma. Humana Press, Totowa, New Jersey, United States of America, 205–215 pp.Google Scholar
  51. Dickinson M, Brown H, Yankey EN, Andoh-Mensah S, Bremang F (2019) Genetic differentiation of the 16SrXXII-B phytoplasmas in Ghana based on the gene leucyl tRNA synthetase gene. Phytopathogenic Mollicutes 9, 195–196.CrossRefGoogle Scholar
  52. Dermastia M, Dolanc D, Mlinar P, Mehle N (2018) Molecular diversity of ‘Candidatus Phytoplasma mali’ and ‘Ca. P. prunorum’ in orchards in Slovenia. European Journal of Plant Pathology 152, 791–800.CrossRefGoogle Scholar
  53. Desai AR, Musil KM, Carr AP, Hill JE (2009) Characterization and quantification of feline fecal microbiota using cpn60 sequence-based methods and investigation of animal-to-animal variation in microbial population structure. Veterinary Microbiology 137, 120–128.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Duduk B, Calari A, Paltrinieri S, Duduk N, Bertaccini A (2009) Multigene analysis for differentiation of aster yellows phytoplasmas infecting carrots in Serbia. Annals of Applied Biology 154, 219–229.CrossRefGoogle Scholar
  55. Duduk B, Tian JB, Contaldo N, Fan XP, Paltrinieri S, Chen QF, Zhao QF, Bertaccini A (2010) Occurrence of phytoplasmas related to “stolbur” and to ‘Candidatus Phytoplasma japonicum’ in woody host plants in China. Journal of Phytopathology 158, 100–104.CrossRefGoogle Scholar
  56. Duduk B, Bertaccini A (2011) Phytoplasma classification: taxonomy based on 16S ribosomal gene, is it enough? Phytopathogenic Mollicutes 1, 1–13.CrossRefGoogle Scholar
  57. Dumonceaux T, Green M, Hammond C, Pérez-López E, Olivier C (2014) Molecular diagnostic tools for detection and differentiation of phytoplasmas based on chaperonin-60 reveal differences in host plant infection patterns. Plos One 9, e116039.PubMedPubMedCentralCrossRefGoogle Scholar
  58. El-Sisi Y, Omar AF, Sidaros SA, Elsharkawy MM, Foissac X (2018) Multilocus sequence analysis supports a low genetic diversity among ‘Candidatus Phytoplasma australasia’ related strains infecting vegetable crops and periwinkle in Egypt. European Journal of Plant Pathology 150, 779–784.CrossRefGoogle Scholar
  59. Fabre A, Danet J-L, Foissac X (2011) The “stolbur” phytoplasma antigenic membrane protein gene stamp is submitted to diversifying positive selection. Gene 472, 37–41.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Fernández FD, Meneguzzi NG, Guzmán FA, Kirschbaum DS, Conci VC, Nome CF, Conci LR (2015) Detection and identification of a novel 16SrXIII subgroup phytoplasma associated with strawberry red leaf disease in Argentina. International Journal of Systematic and Evolutionary Microbiology 65, 2741–2747.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Fernández FD, Galdeano E, Kornowski MV, Arneodo JD, Conci LR (2016) Description of ‘Candidatus Phytoplasma meliae’, a phytoplasma associated with Chinaberry (Melia azedarach L.) yellowing in South America. International Journal of Systematic and Evolutionary Microbiology 66, 5244–5251.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Fialová R, Válová P, Balakishiyeva G, Danet J-L, Šafárová D, Foissac X, Navrátil M (2009) Genetic variability of “stolbur” phytoplasma in annual crop and wild plant species in south Moravia. Journal of Plant Pathology 91, 411–416.Google Scholar
  63. Fiore N, Bertaccini A, Bianco PA, Cieślińska M, Ferretti L, Hoat TX, Quaglino F (2018) Fruit crop phytoplasmas. In: Phytoplasmas: Plant Pathogenic Bacteria-I. Characterization and Epidemiology of Phytoplasma-Associated Diseases. Chapter 6. Eds GP Rao, A Bertaccini, N Fiore, L Liefting. Springer, Singapore, 153–190 pp.CrossRefGoogle Scholar
  64. Foissac X, Carle P, Fabre A, Salar P, Danet JL, Stolbureuromed Consortium (2013) ‘Candidatus Phytoplasma solani’ genome project and genetic diversity in the Euro-Mediterranean basin. 3rd European “Bois Noir” Workshop, Barcelona, Spain, 11–13.Google Scholar
  65. Fránová J, Ludvíková H, Paprštein F, Bertaccini A (2013) Genetic diversity of Czech ‘Candidatus Phytoplasma mali’ strains based on multilocus gene analyses. European Journal of Plant Pathology 136, 675–688.CrossRefGoogle Scholar
  66. Fránová J, de Sousa E, Mimoso C, Cardoso F, Contaldo N, Paltrinieri S, Bertaccini A (2016) Multigene characterization of a new ‘Candidatus Phytoplasma rubi’-related strain associated with blackberry witches’ broom in Portugal. International Journal of Systematic and Evolutionary Microbiology 66, 1438–1446.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Fránová J, Koloniuk I, Lenz O, Sakalieva D (2018) Molecular diversity of ‘Candidatus Phytoplasma mali’ strains associated with apple proliferation disease in Bulgarian germplasm collection. Folia microbiologica 64, 373–382.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Galdeano E, Guzmán FA, Fernández F, Conci RG (2013) Genetic diversity of 16SrIII group phytoplasmas in Argentina. Predominance of subgroups 16SrIII-J and B and two new subgroups 16SrIII-W and X. European Journal of Plant Pathology 137, 753–764.CrossRefGoogle Scholar
  69. Goh SH, Potter S, Wood JO, Hemmingsen SM, Reynolds RP, Chow AW (1996) HSP60 gene sequences as universal targets for microbial species identification: studies with coagulase-negative staphylococci. Journal of Clinical Microbiology 34, 818–823.Google Scholar
  70. Granata G, Paltrinieri S, Botti S, Bertaccini A (2006) Aetiology of Opuntia ficus-indica malformations and stunting disease. Annals of Applied Biology 149, 317–325.CrossRefGoogle Scholar
  71. Gundersen DE, Lee I-M, Schaff DA, Harrison NA, Chang CJ, Davis RE, Kinsbury DT (1996) Genomic diversity among phytoplasma strains in 16S rRNA group I (aster yellows and related phytoplasmas) and III (X-disease and related phytoplasmas). International Journal of Systematic Bacteriology 46, 64–75.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Harrison N, Boa E, Carpio M (2003) Characterization of phytoplasmas detected in Chinaberry trees with symptoms of leaf yellowing and decline in Bolivia. Plant Pathology 52, 147–157.CrossRefGoogle Scholar
  73. Harrison NA, Davis RE, Oropeza C, Helmick EE, Narváez M, Eden-Green S, Dollet M, Dickinson M (2014) ‘Candidatus Phytoplasma palmicola’, associated with a lethal yellowing-type disease of coconut (Cocos nucifera L.) in Mozambique. International Journal of Systematic and Evolutionary Microbiology 64, 1890–1899.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Hodgetts J, Boonham N, Mumford R, Harrison N, Dickinson M (2008) Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of ‘Candidatus Phytoplasma’. International Journal of Systematic and Evolutionary Microbiology 58, 1826–1837.CrossRefGoogle Scholar
  75. Hodgetts J, Dickinson M (2010) Phytoplasma phylogeny and detection based on genes other than 16S rRNA. In: Phytoplasmas-Genomes, Plant Hosts and Vectors. Eds Weintraub PG, Jones P. CAB International. Wallingford, United Kingdom, 93–113 pp.Google Scholar
  76. Iriti M, Quaglino F, Maffi D, Casatti P, Bianco PA, Faoro F (2008) Solanum malacoxylon, a new natural host of “stolbur” phytoplasma. Journal of Phytopathology 156, 8–14.Google Scholar
  77. IRPCM (2004) ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonise plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology 54, 1243–1255.CrossRefGoogle Scholar
  78. Jarausch W, Schwind N, Jarausch B, Krczal G (2004) Analysis of the distribution of apple proliferation phytoplasma subtypes in a local fruit growing region in Southwest Germany. Acta Horticulturae 657, 421–424.CrossRefGoogle Scholar
  79. Jernej P, Nataša M, Petra N, Marina D (2014) Molecular diversity of ‘Candidatus Phytoplasma pyri’ isolates in Slovenia. European Journal of Plant Pathology 139, 801–809.CrossRefGoogle Scholar
  80. Jomantiene R, Davis RE, Maas J, Dally EL (1998) Classification of new phytoplasmas associated with diseases of strawberry in Florida, based on analysis of 16S rRNA and ribosomal protein gene operon sequences. International Journal of Systematic Bacteriology 48, 269–277.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Jović J, Cvrković T, Mitrović M, Petrović A, Krstić O, Krnjajić S, Toševski I (2011) Multigene sequence data and genetic diversity among ‘Candidatus Phytoplasma ulmi’ strains infecting Ulmus spp. in Serbia. Plant Pathology 60, 356–368.CrossRefGoogle Scholar
  82. Jung H-Y, Sawayanagi T, Wongkaew P, Kakizawa S, Nishigawa H, Wei W, Oshima K, Miyata S, Ugaki M, Hibi T, Namba S (2003) ‘Candidatus Phytoplasma oryzae’, a novel phytoplasma taxon associated with rice yellow dwarf disease. International Journal of Systematic and Evolutionary Microbiology 53, 1925–1929.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Kakizawa S, Oshima K, Kuboyama T, Nishigawa H, Jung HY, Sawayanagi T, Tsuchizaki T, Miyata S, Ugaki M, Namba S (2001) Cloning and expression analysis of Phytoplasma protein translocation genes. Molecular Plant Microbe Interactions 14, 1043–1050.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Kakizawa S, Oshima K, Namba S (2006) Diversity and functional importance of phytoplasma membrane proteins. Trends in Microbiology 14, 254–256.CrossRefGoogle Scholar
  85. Katanić Z, Krstin L, Ježić M, Zebec M, Ćurković-Perica M (2016) Molecular characterization of elm yellows phytoplasmas in Croatia and their impact on Ulmus spp. Plant Pathology 65, 1430–1440.CrossRefGoogle Scholar
  86. Kim KS, Ko KS, Chang MW, Hahn TW, Hong SK, Kook YH (2003) Use of rpoB sequences for phylogenetic study of Mycoplasma species. FEMS Microbiology Letters 226, 299–305.PubMedCrossRefPubMedCentralGoogle Scholar
  87. Kosovac A, Radonjić S, Hrnčić S, Krstić O, Toševski I, Jović J (2016) Molecular tracing of the transmission routes of “bois noir” in Mediterranean vineyards of Montenegro and experimental evidence for the epidemiological role of Vitex agnus-castus (Lamiaceae) and associated Hyalesthes obsoletus (Cixiidae). Plant Pathology 65, 285–298.CrossRefGoogle Scholar
  88. Kostadinovska E, Quaglino F, Mitrev S, Casati P, Bulgari D, Bianco PA (2014) Multiple gene analyses identify distinct “bois noir” phytoplasma genotypes in the Republic of Macedonia. Phytopathologia Mediterranea 53, 491–501.Google Scholar
  89. Kra KD, Toualy MN, Kouamé AEP, Séka K, Kwadjo KE, Diallo HA, Bertaccini A, Arocha Rosete A (2017) New phytoplasma subgroup identified from Arecaceae palm species in Grand-Lahou, Côte d’Ivoire. Canadian Journal of Plant Pathology 39, 297–306.CrossRefGoogle Scholar
  90. Križanac I, Plavec J, Budinšćak Ž, Ivić D, Škorić D, Šeruga-Musić M (2017) Apple proliferation disease in Croatian orchards: a molecular characterization of ‘Candidatus Phytoplasma mali’. Journal of Plant Pathology 99, 95–101.Google Scholar
  91. Kumar S, Jadon VS, Rao GP (2017) Use of secA gene for characterization of phytoplasmas associated with sugarcane grassy shoot disease in India. Sugar Tech 19, 632–637.CrossRefGoogle Scholar
  92. Lai F, Song CS, Ren ZG, Lin CL, Xu QC, Li Y, Piao CG, Yu SS, Guo MW, Tian GZ (2014) Molecular characterization of a new member of the 16SrV group of phytoplasma associated with Bischofia polycarpa (Levl.) Airy Shaw witches’ broom disease in China by a multiple gene-based analysis. Australasian Plant Pathology 43, 557–569.CrossRefGoogle Scholar
  93. Langer M, Maixner M (2004) Molecular characterization of grape-vine yellows associated phytoplasmas of the “stolbur”-group based on RFLP-analysis of non-ribosomal DNA. Vitis 43, 191–199.Google Scholar
  94. Lee I-M, Gundersen-Rindal DE, Davis RE, Bartoszyk IM (1998) Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. International Journal of Systematic and Evolutionary Microbiology 48, 1153–1169.Google Scholar
  95. Lee I-M, Martini M, Bottner KD, Dane RA, Black MC, Troxclair N (2003) Ecological Implications from a molecular analysis of phytoplasmas involved in an aster yellows epidemic in various crops in Texas. Phytopathology 93, 1368–1377.CrossRefGoogle Scholar
  96. Lee I-M, Gundersen-Rindal D, Davis RE, Bottner KD, Marcone C, Seemüller E (2004a) ‘Candidatus Phytoplasma asteris’, a novel taxon associated with aster yellows and related diseases. International Journal of Systematic and Evolutionary Microbiology 54, 1037–1048.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Lee I-M, Martini M, Marcone C, Zhu SF (2004b) Classification of phytoplasma strains in the elm yellows group (16SrV) and proposal of ‘Candidatus Phytoplasma ulmi’ for the phytoplasma associated with elm yellows. International Journal of Systematic and Evolutionary Microbiology 54, 337–347.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Lee I-M, Zhao Y, Bottner KD (2006) SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma group. Molecular and Cellular Probes 20, 87–91.PubMedPubMedCentralCrossRefGoogle Scholar
  99. Lee I-M, Bottner-Parker KD, Zhao Y, Davis RE, Harrison NA (2010) Phylogenetic analysis and delineation of phytoplasmas based on secY gene sequences. International Journal of Systematic and Evolutionary Microbiology 60, 2887–2897.CrossRefGoogle Scholar
  100. Lee I-M, Bottner-Parker KD, Zhao Y, Bertaccini A, Davis RE (2012) Differentiation and classification of phytoplasmas in the pigeon pea witches’ broom group (16SrIX): an update based on multiple gene sequence analysis. International Journal of Systematic and Evolutionary Microbiology 62, 2279–2285.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Li Y, Piao CG, Tian GZ, Liu ZX, Guo MW, Lin CL, Wang XZ (2014) Multilocus sequences confirm the close genetic relationship of four phytoplasmas of peanut witches’ broom group 16SrII-A. Journal of Basic Microbiology 54, 818–827.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Lim PO, Sears BB (1991) DNA sequence of the ribosomal protein genes rp12 and rps19 from a plant-pathogenic mycoplasma-like organism. FEMS Microbiology Letters 84, 71–74.CrossRefGoogle Scholar
  103. Lim PO, Sears BB (1992) Evolutionary relationship of plant pathogenic mycoplasma-like organism and Acholeoplasma laidlawii deduced from two ribosomal protein gene sequences. Journal of Bacteriology 174, 2606–2611.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Links MG, Dumonceaux TJ, Hemmingsen SM, Hill JE (2012) The chaperonin-60 universal target is a barcode for bacteria that rnables de novo assembly of metagenomic sequence data. Plos One 7, e49755.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Makarova OV, Contaldo N, Paltrinieri S, Kawube G, Bertaccini A, Nicolaisen M (2012) DNA barcoding for universal identification of ‘Candidatus Phytoplasmas’ using a fragment of the elongation factor Tu gene. Plos One 7, e52092.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Makarova O, Contaldo N, Paltrinieri S, Bertaccini A, Nyskjold H, Nicolaisen M (2013) DNA bar-coding for phytoplasma identification. In: Phytoplasma. Humana Press, Totowa, New Jersey, United States of America, 301–317 pp.Google Scholar
  107. Maixner M (2011) Recent advances in “bois noir” research. Petria 21, 95–108.Google Scholar
  108. Malembic-Maher S, Salar P, Filippin L, Carle P, Angelini E, Foissac X (2011) Genetic diversity of European phytoplasmas of the 16SrV taxonomic group and proposal of ‘Candidatus Phytoplasma rubi’. International Journal of Systematic and Evolutionary Microbiology 61, 2129–2134.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Marcone C, Lee I-M, Davis RE, Ragozzino A, Seemüller E (2000) Classification of aster yellows-group phytoplasmas based on combined analyses of rRNA and tuf gene sequences. International Journal of Systematic and Evolutionary Microbiology 50, 1703–1713.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Marcone C, Franco-Lara L, Tosevski I (2018) Major phytoplasma diseases of forest and urban trees. In: Phytoplasmas: Plant Pathogenic Bacteria-I. Characterization and Epidemiology of Phytoplasma-Associated Diseases. Chapter 10. Eds GP Rao, A Bertaccini, N Fiore, L Liefting. Springer, Singapore, 298–312 pp.CrossRefGoogle Scholar
  111. Martini M, Murari E, Mori N, Bertaccini A (1999) Identification and epidemic distribution of two “flavescence dorée”-related phytoplasmas in Veneto (Italy). Plant Disease 83, 925–930.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Martini M, Botti S, Marcone C, Marzachì C, Casati P, Bianco PA, Benedetti R, Bertaccini A (2002) Genetic variability among “flavescence dorée” phytoplasmas from different origins in Italy and France. Molecular and Cellular Probes 16, 197–208.PubMedCrossRefPubMedCentralGoogle Scholar
  113. Martini M, Lee I-M, Bottner KD, Zhao Y, Botti S, Bertaccini A, Harrison NA, Carraro L, Marcone C, Khan J, Osler R (2007) Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. International Journal of Systematic and Evolutionary Microbiology 57, 2037–2051.CrossRefGoogle Scholar
  114. Martini M, Ermacora P, Falginella L, Loi N, Carraro L (2008) Molecular differentiation of ‘Candidatus Phytoplasma mali’ and its spreading in Friuli Venezia Giulia region (North-East Italy). Acta Horticulturae 781, 395–402.CrossRefGoogle Scholar
  115. Martini M, Ferrini F, Danet J-L, Ermacora P, Sertkaya G, Delić D, Loi N, Foissac X, Carraro L (2010) PCR/RFLP-based method for molecular characterization of ‘Candidatus Phytoplasma prunorum’ strains using the aceF gene. Julius-Kühn-Archiv 427, 386–391.Google Scholar
  116. Martini M, Ermacora P, Tosone N, Loschi A, Pavan F, Loi N (2011) Genetic diversity of “stolbur” phytoplasma strains from different host plants in Friuli Venezia Giulia. Petria 21, 148–149.Google Scholar
  117. Martini M, Marcone C, Mitrović J, Maixner M, Delić D, Myrta A, Ermacora P, Bertaccini A, Duduk B (2012) ‘Candidatus Phytoplasma convolvuli’, a new phytoplasma taxon associated with bindweed yellows in four European countries. International Journal of Systematic and Evolutionary Microbiology 62, 2910–2915.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Mitrovic J, Kakizawa S, Duduk B, Oshima K, Namba S, Bertaccini A (2011) The cpn60 gene as an additional marker for finer differentiation of ‘Candidatus Phytoplasma asteris’-related strains. Annals of Applied Biology 159, 41–48.CrossRefGoogle Scholar
  119. Mitrovic J, Smiljković M, Seemüller E, Reinhardt R, Hüttel B, Büttner C, Bertaccini A, Kube M, Duduk B (2015) Differentiation of ‘Candidatus Phytoplasma cynodontis’ based on 16S rRNA and groEL genes and identification of a new subgroup, 16SrXIV-C. Plant Disease 99, 1578–1583.PubMedCrossRefPubMedCentralGoogle Scholar
  120. Mitrović M, Jakovljević M, Jović J, Krstić O, Kosovac A, Trivellone V, Tosevski I, Cvrković T (2016) ‘Candidatus Phytoplasma solani’ genotypes associated with potato “stolbur” in Serbia and the role of Hyalesthes obsoletus and Reptalus panzeri (Hemiptera, Cixiidae) as natural vectors. European Journal of Plant Pathology 144, 619–630.CrossRefGoogle Scholar
  121. Miyazaki A, Shigaki T, Koinuma H, Iwabuchi N, Rauka G, Kembu A, Saul J, Watanabe K, Nijo T, Maejima K, Yamaji Y, Namba S (2018) ‘Candidatus Phytoplasma novoguineense’, a novel taxon associated with Bogia coconut syndrome and banana wilt disease on the island of New Guinea. International Journal of Systematic and Evolutionary Microbiology 68, 170–175.PubMedCrossRefPubMedCentralGoogle Scholar
  122. Mori N, Quaglino F, Sanna F, Filisetti S, Faccincani M, Bianco PA (2018) Potential role of Euscelis incisus Kirschbaum and Dicranotropis hamata Boheman in the transmission of ‘Candidatus Phytoplasma solani’ to grapevine. 19th Meeting of ICVG, Santiago, Chile April 9–12, 92–93.Google Scholar
  123. Murolo S, Romanazzi G (2015) In-vineyard population structure of ‘Candidatus Phytoplasma solani’ using multilocus sequence typing analysis. Infection, Genetics and Evolution 31, 221–230.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Murolo S, Romanazzi G (2016) Multilocus sequence analysis as a powerful tool to monitor molecular epidemiology of ‘Candidatus Phytoplasma solani’ at vineyard scale. Mitteilungen Klosterneuburg 66, 40–73.Google Scholar
  125. Murolo S, Marcone C, Prota V, Garau R, Foissac X, Romanazzi G (2010) Genetic variability of the “stolbur” phytoplasma vmp1 gene in grapevines, bindweeds and vegetables. Journal of Applied Microbiology 109, 2049–2059.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Myrie W, Oropeza C, Sáenz L, Harrison NA, Roca MM, Córdova I, Ku S, Douglas L (2011) Reliable improved molecular detection of coconut lethal yellowing phytoplasma and reduction of associated disease through field management strategies. Bulletin of Insectology 64(Supplement), S203–S204.Google Scholar
  127. Oshima K, Kakizawa S, Nishigawa H, Jung HY, Wei W, Suzuki S, Arashida R, Nakata D, Miyata S, Ugaki M, Namba S (2004) Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genetics 36, 27–29.CrossRefGoogle Scholar
  128. Pacifico D, Foissac X, Veratti F, Marzachì C (2007) Genetic diversity of Italian and French “bois noir” phytoplasma isolates. Bulletin of Insectology 60, 345–346.Google Scholar
  129. Pacifico D, Alma A, Bagnoli B, Foissac X, Pasquini G, Tessitori M, Marzachì C (2009) Characterization of “bois noir” isolates by restriction fragment length polymorphism of a “stolbur”-specific putative membrane protein gene. Phytopathology 99, 711–715.PubMedCrossRefPubMedCentralGoogle Scholar
  130. Paltrinieri S, Duduk B, Dal Molin F, Mori N, Comerlati G, Bertaccini A (2010) Molecular characterization of ‘Candidatus Phytoplasma mali’ strains in outbreaks of apple proliferation in north eastern Italy, Hungary, and Serbia. Julius-Kühn-Archiv 427, 178–182.Google Scholar
  131. Paltrinieri S, Contaldo N, Duduk B, Bertaccini A (2012) Strain differentiation in “flavescence dorée” phytoplasmas on secY and tuf genes. 17th Meeting of ICVG, Davis California, USA, October 7–14, 236–237.Google Scholar
  132. Paredes-Tomás C, Satta E, Paltrinieri S, Oropeza Salín C, Myrie W, Bertaccini A Maritza Luis-Pantoja, (2019) ‘Candidatus Phytoplasma’ species detection in coconuts in Cuba. Phytopathogenic Mollicutes 9, 191–192.CrossRefGoogle Scholar
  133. Pérez-López E, Dumonceaux TJ (2016) Detection and identification of the heterogeneous novel subgroup 16SrXIII-(A/I) I phytoplasma associated with strawberry green petal disease and Mexican periwinkle virescence. International Journal of Systematic and Evolutionary Microbiology 66, 4406–4415.PubMedCrossRefPubMedCentralGoogle Scholar
  134. Pérez-López E, Luna-Rodríguez M, Olivier CY, Dumonceaux TJ (2016) The underestimated diversity of phytoplasmas in Latin America. International Journal of Systematic and Evolutionary Microbiology 66, 492–513.PubMedCrossRefPubMedCentralGoogle Scholar
  135. Pérez-López E, Wei W, Wang J, Davis RE, Luna-Rodríguez M, Zhao Y (2017) Novel phytoplasma strains of X-disease group unveil genetic markers that distinguish North American and South American geographic lineages within subgroups 16SrIII-J and 16SrIII-U. Annals of Applied Biology 171, 405–416.CrossRefGoogle Scholar
  136. Pierro R, Passera A, Panattoni A, Casati P, Luvisi A, Rizzo D, Bianco PA, Quaglino F, Materazzi A (2018) Molecular typing of “bois noir” phytoplasma strains in the Chianti Classico area (Tuscany, central Italy) and their association with symptom severity in Vitis vinifera “Sangiovese”. Phytopathology 108, 362–373.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Quaglino F, Zhao Y, Bianco PA, Wei W, Casati P, Durante G, Davis RE (2009) New 16Sr subgroups and distinct single nucleotide polymorphism lineages among grapevine “bois noir” phytoplasma populations. Annals of Applied Biology 154, 279–289.CrossRefGoogle Scholar
  138. Quaglino F, Casati P, Bianco PA (2010) Distinct rpsC single nucleotide polymorphism lineages of “flavescence dorée” subgroup 16SrV-D phytoplasma co-infect Vitis vinifera L. Folia Microbiologica 55, 251–257.PubMedCrossRefPubMedCentralGoogle Scholar
  139. Quaglino F, Zhao Y, Casati P, Bulgari D, Bianco PA, Wei W, Davis RE (2013) ‘Candidatus Phytoplasma solani’, a novel taxon associated with “stolbur”- and “bois noir”-related diseases of plants. International Journal of Systematic and Evolutionary Microbiology 63, 2879–2894.PubMedCrossRefPubMedCentralGoogle Scholar
  140. Quaglino F, Kube M, Jawhari M, Abou-Jawdah Y, Siewert C, Choueiri E, Sobh H, Casati P, Tedeschi R, Molino Lova M, Alma A, Bianco PA (2015) ‘Candidatus Phytoplasma phoenicium’ associated with almond witches’ broom disease: from draft genome to genetic diversity among strain populations. BMC Microbiology 15, 148.Google Scholar
  141. Quaglino F, Maghradze D, Casati P, Chkhaidze N, Lobjanidze M, Ravasio A, Passera, Venturini AG, Failla O, Bianco PA (2016) Identification and characterization of new ‘Candidatus Phytoplasma solani’ strains associated with “bois noir” disease in Vitis vinifera L. cultivars showing a range of symptoms severity in Georgia, the Caucasus region. Plant Disease 100, 904–915.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Quaglino F, Murolo S, Zhao Y, Casati P, Durante G, Wei W, Bianco PA, Romanazzi G, Davis RE (2017) Identification of new -J and -K 16SrXII subgroups and distinct single nucleotide polymorphism genetic lineages among ‘Candidatus Phytoplasma solani’ strains associated with “bois noir” in Central Italy. Australasian Plant Pathology 46, 31–34.CrossRefGoogle Scholar
  143. Radonjić S, Hrnčić S, Kosovac A, Krstić O, Mitrović M, Jović J, Toševski I (2016) First report of ‘Candidatus Phytoplasma solani’ associated with potato “stolbur” disease in Montenegro. Plant Disease 100, 1775.CrossRefGoogle Scholar
  144. Rao GP, Alvarez E, Yadav A. 2018. Phytoplasma diseases of industrial crops. In: Phytoplasmas: Plant Pathogenic Bacteria-I. Characterization and Epidemiology of Phytoplasma-Associated Diseases. Chapter 4. Eds GP Rao, A Bertaccini, N Fiore, L Liefting. Springer, Singapore, 91–121 pp.Google Scholar
  145. Ren ZG, Lin CL, Li Y, Song CS, Wang XZ, Piao CG, Tian GZ (2014) Comparative molecular analyses of phytoplasmas infecting Sophora japonica cv. golden and Robinia pseudoacacia. Journal of Phytopathology 162, 98–106.CrossRefGoogle Scholar
  146. Riolo P, Landi L, Nardi S, Isidoro N (2007) Relationships among Hyalesthes obsoletus, its herbaceous host plants and “bois noir” phytoplasma strains in vineyard ecosystems in the Marche region (central-eastern Italy). Bulletin of Insectology 60, 353–354.Google Scholar
  147. Šafárová D, Zemánek T, Válová P, Navrátil M (2016) ‘Candidatus Phytoplasma cirsii’, a novel taxon from creeping thistle [Cirsium arvense (L.) Scop]. International Journal of Systematic and Evolutionary Microbiology 66, 1745–1753.PubMedCrossRefPubMedCentralGoogle Scholar
  148. Salehi M, Salehi E, Siampour M, Quaglino F, Bianco PA (2018) Apricot yellows associated with ‘Candidatus Phytoplasma phoenicium’ in Iran. Phytopathologia Mediterranea 57, 269–283.Google Scholar
  149. Santos-Cervantes ME, Chávez-Medina JA, Acosta-Pardini J, Flores-Zamora GL, Méndez-Lozano J, Leyva-López NE (2010) Genetic diversity and geographical distribution of phytoplasmas associated with potato purple top disease in Mexico. Plant Disease 94, 388–395.PubMedCrossRefPubMedCentralGoogle Scholar
  150. Satta E, Contaldo N, Mejia JF, Paltrinieri S, Bertaccini A, Bellardi MG (2013) Characterization on six genes of ‘Candidatus Phytoplasma asteris’-related phytoplasmas infecting cyclamen. Phytopathogenic Mollicutes 3, 72–76.CrossRefGoogle Scholar
  151. Sawayanagi T, Horikoshi N, Kanheira T, Shinhoara M, Bertaccini A, Cousin M-T, Hiruki C, Namba S (1999) ‘Candidatus Phytoplasma japonicum’, a new phytoplasma taxon associated with Japanese Hydrangea phyllody. International Journal of Systematic Bacteriology 49, 1275–1285.PubMedCrossRefPubMedCentralGoogle Scholar
  152. Schneider B, Gibb KS, Seemüller E (1997) Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasmas. Microbiology 143, 3381–3389.PubMedCrossRefPubMedCentralGoogle Scholar
  153. Schneider B, Seemüller E (2009) Strain differentiation of ‘Candidatus Phytoplasma mali’ by SSCP- and sequence analyses of the hflB gene. Journal of Plant Pathology 91, 103–112.Google Scholar
  154. Seemüller E, Schneider B (2004) Taxonomic description of ‘Candidatus Phytoplasma mali’ sp. nov., ‘Candidatus Phytoplasma pyri’ sp. nov. and ‘Candidatus Phytoplasma prunorum’ sp. nov., the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively. International Journal of Systematic and Evolutionary Microbiology 54, 1217–1226.PubMedCrossRefPubMedCentralGoogle Scholar
  155. Seemüller E, Kampmann M, Kiss E, Schneider B (2011) HflB gene-based phytopathogenic classification of ‘Candidatus Phytoplasma mali’ strains and evidence that strain composition determines virulence in multiply infected apple trees. Molecular Plant-Microbe Interactions 24, 1258–1266.CrossRefGoogle Scholar
  156. Sémétey O, Gaudin J, Danet J-L, Salar P, Theil S, Fontaine M, Krausz M, Chaisse E, Eveillard S, Verdin E, Foissac X (2018) Lavender decline in France is associated with chronic infection by lavender-specific strains of ‘Candidatus Phytoplasma solani’. Applied Environmental Microbiology 84, e01507–18.PubMedCrossRefPubMedCentralGoogle Scholar
  157. Shao J, Jomantiene R, Dally EL, Zhao Y, Lee I-M, Nuss DL, Davis RE (2006) Phylogeny and characterization of phytoplasmal NusA and use of the nusA gene in detection of group 16SrI strains. Journal of Plant Pathology 88, 193–201.Google Scholar
  158. Sharon R, Soroker V, Wesley SD, Zahavi T, Harari A, Weintraub PG (2005) Vitex agnus-castus is a preferred host plant for Hyalesthes obsoletus. Journal of Chemical Ecology 31, 1051–1063.PubMedCrossRefPubMedCentralGoogle Scholar
  159. Streten C, Gibb KS (2005) Genetic variation in ‘Candidatus Phytoplasma australiense’. Plant Pathology 54, 8–14.CrossRefGoogle Scholar
  160. Tolu G, Botti S, Garau R, Prota VA, Sechi A, Prota U, Bertaccini A (2006) Identification of 16SrII-E phytoplasmas in Calendula arvensis L., Solanum nigrum L. and Chenopodium spp.. Plant Disease 90, 325–330.PubMedCrossRefPubMedCentralGoogle Scholar
  161. Valasevich N, Schneider B (2016) Detection, identification and molecular diversity of ‘Candidatus Phytoplasma prunorum’ in Belarus. Journal of Plant Pathology 98, 625–629.Google Scholar
  162. Valiunas D, Staniulis J, Davis RE (2006) ‘Candidatus Phytoplasma fragariae’, a novel phytoplasma taxon discovered in yellows diseased strawberry, Fragaria x ananassa. International Journal of Systematic and Evolutionary Microbiology 56, 277–281.CrossRefGoogle Scholar
  163. Valiunas D, Jomantiene R, Davis RE (2013) Evaluation of the DNA-dependent RNA polymerase β-subunit gene (rpoB) for phytoplasma classification and phylogeny. International Journal of Systematic and Evolutionary Microbiology 63, 3904–3914.PubMedCrossRefPubMedCentralGoogle Scholar
  164. Verdin E, Salar P, Danet J-L, Choueiri E, Jreijiri F, El Zammar S, Gèlie B, Bové J, Garnier M (2003) ‘Candidatus Phytoplasma phoeniceum’, a new phytoplasma associated with an emerging lethal disease of almond trees in Lebanon and Iran. International Journal of Systematic and Evolutionary Microbiology 53, 833–838.PubMedCrossRefPubMedCentralGoogle Scholar
  165. Vermette CJ, Russell AH, Desai AR, Hill JE (2010) Resolution of phenotypically distinct strains of Enterococcus spp. in a complex microbial community using cpn60 universal target sequencing. Microbial Ecology 59, 14–24.PubMedCrossRefPubMedCentralGoogle Scholar
  166. Wang J, Liu Q, Wei W, Davis RE, Tan Y, Lee I-M, Zhu D, Wei H, Zhao Y (2018) Multilocus genotyping identifies a highly homogeneous phytoplasma lineage associated with sweet cherry virescence disease in China and its carriage by an erythroneurine leafhopper. Crop Protection 106, 13–22.CrossRefGoogle Scholar
  167. Wei W, Davis RE, Lee I-M, Zhao Y (2007) Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. International Journal of Systematic and Evolutionary Microbiology 57, 1855–1867.CrossRefGoogle Scholar
  168. White DT, Blackall LL, Scott PT, Walsh KB (1998) Phylogenetic positions of phytoplasmas associated with dieback, yellow crinkle and mosaic diseases of papaya, and their proposed inclusion in ‘Candidatus Phytoplasma australiense’ and a new taxon, ‘Candidatus Phytoplasma australasia’. International Journal of Systematic Bacteriology 48, 941–951.PubMedCrossRefPubMedCentralGoogle Scholar
  169. Win NKK, Lee S-Y, Bertaccini A, Namba S, Jung H-Y (2013) ‘Candidatus Phytoplasma balanitae’ associated with witches’ broom disease of Balanites triflora. International Journal of Systematic and Evolutionary Microbiology 63, 636–640.PubMedCrossRefPubMedCentralGoogle Scholar
  170. Weintraub PG, Beanland L (2006) Insect vectors of phytoplasmas. Annual Review of Entomology 51, 91–111.CrossRefGoogle Scholar
  171. Yadav A, Thorat V, Deokule S, Shouche Y, Prasad DT (2017) New subgroup 16SrXI-F phytoplasma strain associated with sugarcane grassy shoot (SCGS) disease in India. International Journal of Systematic and Evolutionary Microbiology 67, 374–378.PubMedCrossRefPubMedCentralGoogle Scholar
  172. Zambon Y, Canel A, Bertaccini A, Contaldo N (2018) Molecular diversity of phytoplasmas associated with grapevine yellows disease in north-eastern Italy. Phytopathology 108, 206–214.PubMedCrossRefPubMedCentralGoogle Scholar
  173. Zhang RY, Li WF, Huang YK, Wang XY, Shan HL, Luo Z-M, Yin J (2016) Group 16SrXI phytoplasma strains, including subgroup 16SrXI-B and a new subgroup, 16SrXI-D, are associated with sugarcane white leaf. International Journal of Systematic and Evolutionary Microbiology 66, 487–491.PubMedCrossRefPubMedCentralGoogle Scholar
  174. Zreik L, Carle P, Bové J-M, Garnier M (1995) Characterization of the mycoplasmalike organism associated with witches’ broom disease of lime and proposition of a ‘Candidatus’ taxon for the organism, ‘Candidatus Phytoplasma aurantifolia’. International Journal of Systematic Bacteriology 45, 449–453.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Marta Martini
    • 1
  • Fabio Quaglino
    • 2
  • Assunta Bertaccini
    • 3
  1. 1.Department of Agricultural, Food, Environmental and Animal SciencesUniversity of UdineUdineItaly
  2. 2.Department of Agricultural and Environmental Sciences – Production, Landscape, AgroenergyUniversity of MilanMilanItaly
  3. 3.Department of Agricultural and Food SciencesAlma Mater Studiorum – University of BolognaBolognaItaly

Personalised recommendations