Plant-Insect Host Switching Mechanism

  • Kenro Oshima
  • Kensaku Maejima
  • Shigetou Namba


Phytoplasmas are intracellular parasites of both plants and insects and are spread among plants by insects. How phytoplasmas can adapt to two diverse environments has long been of considerable interest. Transcriptional analysis revealed that phytoplasmas dramatically alter the gene expression in response to their hosts and may use transporters, secreted proteins, and metabolic enzymes in a host-specific manner. Several plasmids cloned from phytoplasmas have been speculated to be involved in insect transmissibility. In addition to plasmids, immunodominant membrane proteins are thought to have some important function for host-parasite interactions. It has been suggested that the protein-protein interaction between immunodominant membrane proteins and insect microfilaments may be correlated with the phytoplasma-transmitting capability of leafhoppers. Further analyses about plant-insect host switching mechanism will contribute to the development of novel methods of pest control for phytoplasma diseases.


Insect transmissibility Immunodominant membrane protein Host switching mechanism 


  1. Akimaru J, Matsuyama S, Tokuda H, Mizushima S (1991) Reconstitution of a protein translocation system containing purified SecY, SecE, and SecA from Escherichia coli. Proceedings of the National Academy of Sciences United States of America 88, 6545–6549.CrossRefGoogle Scholar
  2. Alma A, Bosco D, Danielli A, Bertaccini A, Vibio M, Arzone A (1997) Identification of phytoplasmas in eggs, nymphs and adults of Scaphoideus titanus Ball reared on healthy plants. Insect Molecular Biology 6, 115–121.CrossRefGoogle Scholar
  3. Andersen MT, Liefting LW, Havukkala I, Beever RE (2013) Comparison of complete genome sequence of two closely related isolates of ‘Candidatus Phytoplasma australiense’ reveals genome plasticity. BMC Genomics 14, 529.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Andrews TD, Gojobori T (2004) Strong positive selection and recombination drive the antigenic variation of the PilE protein of the human pathogen Neisseria meningitidis. Genetics 166, 25–32.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Arashida R, Kakizawa S, Ishii Y, Hoshi A, Jung HY, Kagiwada S, Yamaji Y, Oshima K, Namba S (2008). Cloning and characterization of the antigenic membrane protein (Amp) gene and in situ detection of Amp from malformed flowers infected with Japanese hydrangea phyllody phytoplasma. Phytopathology 98, 769–775.CrossRefGoogle Scholar
  6. Bai X, Zhang J, Ewing A, Miller SA, Jancso Radek A, Shevchenko DV, Tsukerman K, Walunas T, Lapidus A, Campbell JW, Hogenhout SA (2006) Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. Journal of Bacteriology 188, 3682–3696.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Barbara DJ, Morton A, Clark MF, Davies DL (2002) Immunodominant membrane proteins from two phytoplasmas in the aster yellows clade (chlorante aster yellows and clover phyllody) are highly divergent in the major hydrophilic region. Microbiology 148, 157–167.PubMedPubMedCentralGoogle Scholar
  8. Beanland L, Hoy CW, Miller SA, Nault LR (2000) Influence of aster yellows phytoplasma on the fitness of aster leafhopper (Homoptera: Cicadellidae). Annals of the Entomological Society of America 93, 271–276.CrossRefGoogle Scholar
  9. Berho N, Duret S, Danet J-L, Renaudin J (2006a) Plasmid pSci6 from Spiroplasma citri GII-3 confers insect transmissibility to the non-transmissible strain S. citri. Microbiology 152, 2703–2716.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Berho N, Duret S, Renaudin J (2006b) Absence of plasmids encoding adhesion-related proteins in non-insect-transmissible strains of Spiroplasma citri. Microbiology 152, 873–886.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bertaccini A, Duduk B, Paltrinieri S, Contaldo N (2014) Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. American Journal of Plant Sciences 5, 1763.CrossRefGoogle Scholar
  12. Bishop JG, Dean AM, Mitchell-Olds T (2000) Rapid evolution in plant chitinases: molecular targets of selection in plant-pathogen coevolution. Proceedings of the National Academy of Sciences United States of America 97, 5322–5327.CrossRefGoogle Scholar
  13. Botti S, Bertaccini A (2006) Phytoplasma infection through seed transmission: further observations. 16th International Organization of Mycoplasmology Conference, Cambridge, United Kingdom, 9–14 July, 76, 113.Google Scholar
  14. Breton M, Duret S, Beven L, Dubrana MP, Renaudin J (2010) I-SceI-mediated plasmid deletion and intra-molecular recombination in Spiroplasma citri. Journal of Microbiological Methods 84, 216–222.PubMedCrossRefGoogle Scholar
  15. Calari A, Paltrinieri S, Contaldo N, Sakalieva D, Mori N, Duduk B, Bertaccini A (2011) Molecular evidence of phytoplasmas in winter oilseed rape, tomato and corn seedlings. Bulletin of Insectology 64(Supplement), S157–S158.Google Scholar
  16. Carraro L, Loi N, Ermacora P (2001) Transmission characteristics of the European stone fruit yellows phytoplasma and its vector Cacopsylla pruni. European Journal of Plant Pathology 107, 695–700.CrossRefGoogle Scholar
  17. Christensen NM, Axelsen KB, Nicolaisen M, Schulz A (2005) Phytoplasmas and their interactions with hosts. Trends in Plant Science 10, 526–535.CrossRefGoogle Scholar
  18. Cordova I, Jones P, Harrison NA, Oropeza C (2003) In situ PCR detection of phytoplasma DNA in embryos from coconut palms with lethal yellowing disease. Molecular Plant Pathology 4, 99–108.PubMedCrossRefGoogle Scholar
  19. Cossart P, Pizarro-Cerda J, Lecuit M (2003) Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions. Trends in Cell Biology 13, 23–31.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Duret S, Berho N, Danet J-L, Garnier M, Renaudin J (2003) Spiralin is not essential for helicity, motility, or pathogenicity but is required for efficient transmission of Spiroplasma citri by its leafhopper vector Circulifer haematoceps. Applied Environmental Microbiology 69, 6225–6234.PubMedCrossRefGoogle Scholar
  21. Economou A (1999) Following the leader: bacterial protein export through the Sec pathway. Trends in Microbiology 7, 315–320.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Galetto L, Bosco D, Balestrini R, Genre A, Fletcher J, Marzachì C (2011) The major antigenic membrane protein of ‘Candidatus Phytoplasma asteris’ selectively interacts with ATP synthase and actin of leafhopper vectors. Plos One 6, e22571.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Goodwin PH, Xue BG, Kuske CR, Sears MK (1994) Amplification of plasmid DNA to detect plant-pathogenic mycoplasmalike organisms. Annals of Applied Biology 124, 27–36.CrossRefGoogle Scholar
  24. Hanboonsong Y, Choosai C, Panyim S, Damak D (2002) Transovarial transmission of sugarcane white leaf phytoplasma in the insect vector Matsumuratettix hiroglyphicus (Matsumura). Insect Molecular Biology 11, 97–103.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Hayward RD, Koronakis V (2002) Direct modulation of the host cell cytoskeleton by Salmonella actin-binding proteins. Trends in Cell Biology 12, 15–20.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Hogenhout SA, Oshima K, Ammar E-D, Kakizawa S, Kingdom HN, Namba S (2008) Phytoplasmas: bacteria that manipulate plants and insects. Molecular Plant Pathology 9, 403–423.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, Hashimoto M, Komatsu K, Kagiwada S, Yamaji Y, Namba S (2009) A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proceedings of the National Academy of Sciences United States of America 106, 6416–6421.CrossRefGoogle Scholar
  28. Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335, 167–170.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Ishii Y, Kakizawa S, Hoshi A, Maejima K, Kagiwada S, Yamaji Y, Oshima K, Namba S (2009a) In the non-insect-transmissible line of onion yellows phytoplasma (OY-NIM), the plasmid-encoded transmembrane protein ORF3 lacks the major promoter region. Microbiology 155, 2058–2067.PubMedPubMedCentralGoogle Scholar
  30. Ishii Y, Oshima K, Kakizawa S, Hoshi A, Maejima K, Kagiwada S, Yamaji Y, Namba S (2009b) Process of reductive evolution during 10 years in plasmids of a non-insect-transmissible phytoplasma. Gene 446, 51–57.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Jiggins FM, Hurst GD, Yang Z (2002) Host-symbiont conflicts: positive selection on an outer membrane protein of parasitic but not mutualistic Rickettsiaceae. Molecular Biology Evolution 19, 1341–1349.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Kakizawa S, Oshima K, Kuboyama T, Nishigawa H, Jung H-Y, Sawayanagi T, Tsuchizaki T, Miyata S, Ugaki M, Namba S (2001) Cloning and expression analysis of phytoplasma protein translocation genes. Molecular Plant-Microbe Interactions 14, 1043–1050.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kakizawa S, Oshima K, Nishigawa H, Jung H-Y, Wei W, Suzuki S, Tanaka M, Miyata S, Ugaki M, Namba S (2004) Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli. Microbiology 150, 135–142.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Kakizawa S, Oshima K, Namba S (2006) Diversity and functional importance of phytoplasma membrane proteins. Trends in Microbiology 14, 254–256.CrossRefGoogle Scholar
  35. Kakizawa S, Oshima K, Ishii Y, Hoshi A, Maejima K, Jung H-Y, Yamaji Y, Namba S (2009) Cloning of immunodominant membrane protein genes of phytoplasmas and their in planta expression. FEMS Microbiology Letters 293, 92–101.CrossRefGoogle Scholar
  36. Kawakita H, Saiki T, Wei W, Mitsuhashi W, Watanabe K, Sato M (2000) Identification of mulberry dwarf phytoplasmas in the genital organs and eggs of leafhopper Hishimonoides sellatiformis. Phytopathology 90, 909–914.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Khan AJ, Botti S, Al-Subhi AM, Gundersen-Rindal DE, Bertaccini AF (2002) Molecular identification of a new phytoplasma associated with alfalfa witches’ broom in Oman. Phytopathology 92, 1038–1047.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Killiny N, Castroviejo M, Saillard C (2005) Spiroplasma citri spiralin acts in vitro as a lectin binding to glycoproteins from its insect vector Circulifer haematoceps. Phytopathology 95, 541–548.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Kube M, Schneider B, Kuhl H, Dandekar T, Heitmann K, Migdoll AM, Reinhardt R, Seemüller E (2008) The linear chromosome of the plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’. BMC Genomics 9, 306.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kuboyama T, Huang CC, Lu X, Sawayanagi T, Kanazawa T, Kagami T, Matsuda I, Tsuchizaki T, Namba S (1998) A plasmid isolated from phytopathogenic onion yellows phytoplasma and its heterogeneity in the pathogenic phytoplasma mutant. Molecular Plant-Microbe Interactions 11, 1031–1037.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Lee I-M, Davis RE (1992) Mycoplasmas which infect plant and insects. In: Mycoplasmas: Molecular Biology and Pathogenesis. Eds Maniloff J, McElhansey RN, Finch LR, Baseman JB. ASM Press, Washington DC, United States of America, 379–390 pp.Google Scholar
  42. Lee I-M, Davis RE, Gundersen-Rindal DE (2000) Phytoplasma: phytopathogenic mollicutes. Annual Revue of Microbiology 54, 221–255.CrossRefGoogle Scholar
  43. Lee I-M, Zhao Y, Bottner KD (2006) SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma group. Molecular and Cellular Probes 20, 87–91.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Liefting LW, Shaw ME, Kirkpatrick BC (2004) Sequence analysis of two plasmids from the phytoplasma beet leafhopper-transmitted virescence agent. Microbiology 150, 1809–1817.PubMedCrossRefGoogle Scholar
  45. Maejima K, Oshima K, Namba S (2014) Exploring the phytoplasmas, plant pathogenic bacteria. Japanese Journal of Phytopathology 80, 124–133.CrossRefGoogle Scholar
  46. Maramorosch K (1958) Beneficial effect of virus diseased plants on nonvector insects. Tijdschr Plantenziekten 63, 383–391.Google Scholar
  47. Marcone C, Neimark H, Ragozzino A, Lauer U, Seemüller E (1999) Chromosome sizes of phytoplasmas composing major phylogenetic groups and subgroups. Phytopathology 89, 805–810.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Markham PJ, Townsend R (1979) Experimental vectors of spiroplasmas. In: Leafhopper Vectors and Plant Disease Agents. Eds Maramorosch K, Harris KF. Academic Press, New York, United States of America, 413–445 pp.CrossRefGoogle Scholar
  49. Mittelberger C, Obkircher L, Oettl S, Oppedisano T, Pedrazzoli F, Panassiti B, Kerschbamer C, Anfora G, Janik K (2017) The insect vector vertically transmits the bacterium ‘Candidatus Phytoplasma mali’ to its progeny. Plant Pathology 66, 1015–1021.CrossRefGoogle Scholar
  50. Miura C, Komatsu K, Maejima K, Nijo T, Kitazawa Y, Tomomitsu T, Yusa A, Himeno M, Oshima K, Namba S (2015) Functional characterization of the principal sigma factor RpoD of phytoplasmas via an in vitro transcription assay. Scientific Reports 5, 11893.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Morton A, Davies DL, Blomquist CL, Barbara DJ (2003) Characterization of homologues of the apple proliferation immunodominant membrane protein gene from three related phytoplasmas. Molecular Plant Pathology 4, 109–114.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Nakai K. Kanehisa M (1991) Expert system for predicting protein localization sites in Gram-negative bacteria. Proteins 11, 95–110.CrossRefGoogle Scholar
  53. Neriya Y, Sugawara K, Maejima K, Hashimoto M, Komatsu K, Minato N, Miura C, Kakizawa S, Yamaji Y, Oshima K, Namba S (2011) Cloning, expression analysis, and sequence diversity of genes encoding two different immunodominant membrane proteins in poinsettia branch-inducing phytoplasma (PoiBI). FEMS Microbiology Letters 324, 38–47. PubMedPubMedCentralCrossRefGoogle Scholar
  54. Neriya Y, Maejima K, Nijo T, Tomomitsu T, Yusa A, Himeno M, Netsu O, Hamamoto H, Oshima K, Namba S (2014) Onion yellow phytoplasma P38 protein plays a role in adhesion to the hosts. FEMS Microbiology Letters 361, 115–122.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Nielsen H, Engelbrecht J, Brunak S, and von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engeneering 10, 1–6.CrossRefGoogle Scholar
  56. Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148, 929–936.PubMedPubMedCentralGoogle Scholar
  57. Nielson MW (1979) Taxonomic relationships of leafhopper vectors of plant pathogens. In: Leafhopper Vectors and Plant Disease Agents. Eds Maramorosch K, Harris KF. Academic Press, New York, United States of America, 3–27 pp.CrossRefGoogle Scholar
  58. Nijo T, Neriya Y, Koinuma H, Iwabuchi N, Kitazawa Y, Tanno K, Okano Y, Maejima K, Yamaji Y, Oshima K, Namba S (2017) Genome-wide analysis of the transcription start sites and promoter motifs of phytoplasmas. DNA Cell Biology 36, 1081–1092.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Nipah J, Jones P, Dickinson M (2007) Detection of lethal yellowing phytoplasma in embryos from coconut palms infected with Cape St Paul wilt disease in Ghana. Plant Pathology 56, 777–784.CrossRefGoogle Scholar
  60. Nishigawa H, Oshima K, Kakizawa S, Jung H-Y, Kuboyama T, Miyata S, Ugaki M, Namba S. (2002a) Evidence of intermolecular recombination between extrachromosomal DNAs in phytoplasma: a trigger for the biological diversity of phytoplasma? Microbiology 148, 1389–1396.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Nishigawa H, Oshima K, Kakizawa S, Jung H-Y, Kuboyama T, Miyata S, Ugaki M, Namba S (2002b) A plasmid from a non-insect-transmissible line of a phytoplasma lacks two open reading frames that exist in the plasmid from the wild-type line. Gene 298, 195–201.CrossRefGoogle Scholar
  62. Nishigawa H, Oshima K, Miyata S, Ugaki M, Namba S (2003) Complete set of extrachromosomal DNAs from three pathogenic lines of onion yellows phytoplasma and use of PCR to differentiate each line. Journal of General Plant Pathology 69, 194–198.Google Scholar
  63. Oshima K, Kakizawa S, Nishigawa H, Kuboyama T, Miyata S, Ugaki M, Namba S (2001) A plasmid of phytoplasma encodes a unique replication protein having both plasmid- and virus-like domains: clue to viral ancestry or result of virus/plasmid recombination? Virology 285, 270–277.CrossRefGoogle Scholar
  64. Oshima K, Kakizawa S, Nishigawa H, Jung H-Y, Wei W, Suzuki S, Arashida R, Nakata D, Miyata S, Ugaki M, Namba S (2004) Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genetics 36, 27–29.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Oshima K, Ishii Y, Kakizawa S, Sugawara K, Neriya Y, Himeno M, Minato N, Miura C, Shiraishi T, Yamaji Y, Namba S (2011) Dramatic transcriptional changes in an intracellular parasite enable host switching between plant and insect. Plos One 6, e23242.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Oshima K, Maejima K, Namba S (2013) Genomic and evolutionary aspects of phytoplasmas. Frontiers in Microbiology 4, 230.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Purcell AH, Richardson JR, Finlay AH (1981) Multiplication of X-disease agent in a nonvector leafhopper Macrosteles fascifrons. Annals of Applied Biology 99, 283–289.CrossRefGoogle Scholar
  68. Purcell AH (1988) Increased survival of Dalbulus maidis, a specialist on maize, on non-host plants infected with mollicute plant-pathogens. Entomologia Experimentalis et Applicata 46, 187–196.CrossRefGoogle Scholar
  69. Rekab D, Carraro L, Schneider B, Seemüller E., Chen J., Chang CJ, Locci R, Firrao G (1999) Geminivirus-related extrachromosomal DNAs of the X-clade phytoplasmas share high sequence similarity. Microbiology 145, 1453–1459.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Satta E, Contaldo N, Paltrinieri S, Bertaccini A (2016) Biological and molecular proofs of phytoplasma seed transmission in corn. 21th Congress of the IOM, Brisbane, Australia, July 3–7, 61: 65–66.Google Scholar
  71. Satta E, Nanni IM, Contaldo N, Collina M, Poveda JB, Ramírez AS, Bertaccini A (2017) General phytoplasma detection by a q-PCR method using mycoplasma primers. Molecular and Cellular Probes 35, 1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Satta E, Paltrinieri S, Bertaccini A (2019) Phytoplasma transmission by seed. In: Phytoplasmas: Plant Pathogenic Bacteria-II Transmission and Management of Phytoplasma Associated Diseases. Chapter 6. Eds Bertaccini A, Weintraub P, Rao GP, Mori N. Springer, Singapore, 131–147 pp.CrossRefGoogle Scholar
  73. Schultz GA (1973) Plant resistance to aster yellows. Proceedings North Central Branch Entomology Society of America 28, 93–99.Google Scholar
  74. Suzuki S, Oshima K, Kakizawa S, Arashida R, Jung HY, Yamaji Y, Nishigawa H, Ugaki M, Namba S (2006) Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proceedings of the National Academy of Sciences United States of America 103, 4252–4257.CrossRefGoogle Scholar
  75. Tedeschi R, Ferrato V, Rossi J, Alma A (2006) Possible phytoplasma transovarial transmission in the psyllids Cacopsylla melanoneura and Cacopsylla pruni. Plant Pathology 55, 18–24.CrossRefGoogle Scholar
  76. Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiology and Molecular Biology Revue 64, 515–547.CrossRefGoogle Scholar
  77. Toruno TY, Seruga-Music M, Simi S, Nicolaisen M, Hogenhout SA (2010) Phytoplasma PMU1 exists as linear chromosomal and circular extrachromosomal elements and has enhanced expression in insect vectors compared with plant hosts. Molecular Microbiology 77, 1406–1415.CrossRefGoogle Scholar
  78. Tran-Nguyen LT, Kube M, Schneider B, Reinhardt R, Gibb KS (2008) Comparative genome analysis of ‘Candidatus Phytoplasma australiense’ (subgroup tuf-Australia I; rp-A) and ‘Ca. Phytoplasma asteris’ strains OY-M and AY-WB. Journal of Bacteriology 190, 3979–3991.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Tsuchizaki T, Nishigawa H, Miyata S, Sawayanagi T, Oshima K, Matsuda I, Kuboyama T, Komoto A, Namba S (2001) In planta expression of a protein encoded by the extrachromosomal DNA of a phytoplasma and related to geminivirus replication proteins. Microbiology 147, 507–513.CrossRefGoogle Scholar
  80. Urwin R, Holmes EC, Fox AJ, Derrick JP, Maiden MC (2002) Phylogenetic evidence for frequent positive selection and recombination in the meningococcal surface antigen PorB. Molecular Biology Evolution 19, 1686–1694.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Webb D, Bonfiglioli R, Carraro L, Osler R, Symons R (1999) Oligonucleotides as hybridization probes to localize phytoplasmas in host plants and insect vectors. Phytopathology 89, 894–901.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Wei W, Kakizawa S, Jung HY, Suzuki S, Tanaka M, Nishigawa H, Miyata S, Oshima K, Ugaki M, Hibi T, Namba S (2004) An antibody against the SecA membrane protein of one phytoplasma reacts with those of phylogenetically different phytoplasmas. Phytopathology 94, 683–686.PubMedCrossRefPubMedCentralGoogle Scholar
  83. Weintraub PG, Beanland L (2006) Insect vectors of phytoplasmas. Annual Revue of Entomology 51, 91–111.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Kenro Oshima
    • 1
  • Kensaku Maejima
    • 2
  • Shigetou Namba
    • 2
  1. 1.Department of Clinical Plant Science, Faculty of Bioscience and Applied ChemistryHosei UniversityTokyoJapan
  2. 2.Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan

Personalised recommendations