Skip to main content

Transcriptomic and Proteomic Studies of Phytoplasma-Infected Plants

  • Chapter
  • First Online:
Phytoplasmas: Plant Pathogenic Bacteria - III

Abstract

Recent advances in the development of high-throughput techniques and the corresponding software tools have enabled novel -omics approaches that are aimed at a better understanding of the mechanisms underlying phytoplasma pathogenicity and interactions with their hosts. In this chapter, the literature on transcriptomic and proteomic studies on phytoplasma-infected plants are outlined and summarised. Although data are available only for a few plant species infected with phytoplasmas belonging to different taxonomic groups, some general conclusions on interactions with their plant hosts can be deduced. Some of the most studied effects on phytoplasma-infected plants include (i) down-regulation of a wide array of genes associated with photosynthesis and changes in the corresponding protein levels; (ii) alterations to carbohydrate metabolism at the transcriptome and proteome levels; (iii) differential expression of plant secondary metabolites, as mainly up-regulation of genes involved in flavonoid biosynthesis; and (iv) changes in expression of genes related to auxin, jasmonic acid and salicylic acid signalling pathways involved in plant defence responses. Furthermore, studies on the roles of micro-RNAs in post-transcriptional gene regulation during plant responses to phytoplasmas, and on the functions of long noncoding RNAs during phytoplasma infection, are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbà S, Galetto L, Carle P, Carrère S, Delledonne M, Foissac X, Palmano S, Veratti F, Marzachì C (2014) RNA-Seq profile of “flavescence dorée” phytoplasma in grapevine. BMC Genomics 15, 1088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmad JN, Eveillard S (2011) Study of the expression of defense related protein genes in “stolbur” C and “stolbur” PO phytoplasma-infected tomato. Bulletin of Insectology 64(Supplement), S159-S160.

    Google Scholar 

  • Ahmad JN, Renaudin J, Eveillard S (2013) Expression of defence genes in “stolbur” phytoplasma infected tomatoes, and effect of defence stimulators on disease development. European Journal of Plant Pathology 139, 39–51.

    Article  CAS  Google Scholar 

  • Ahmad JN, Renaudin J, Eveillard S (2015) Molecular study of the effect of exogenous phytohormones application in “stolbur” phytoplasma infected tomatoes on disease development. Phytopathogenic Mollicutes 5(1-Supplement), S121-S122.

    Article  Google Scholar 

  • Albertazzi G, Milc J, Caffagni A, Francia E, Roncaglia E, Ferrari F, Tagliafico E, Stefani E, Pecchioni N (2009) Gene expression in grapevine cultivars in response to “bois noir” phytoplasma infection. Plant Science 176, 792–804.

    Article  CAS  Google Scholar 

  • Ballicora MA, Iglesias AA, Preiss J (2004) ADP-Glucose pyrophosphorylase: a regulatory enzyme for plant starch synthesis. Photosynthesis Research 79, 1–24.

    Article  CAS  PubMed  Google Scholar 

  • Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Analitical Bioanalitical Chemistry 389, 1017–1031.

    Article  CAS  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Molecular Biology 69, 473–488.

    Article  CAS  PubMed  Google Scholar 

  • Bertaccini A (2017) Phytoplasmas: dangerous and intriguing bacteria. In: Grapevine yellows diseases and their phytoplasma agents. Eds Dermastia M, Bertaccini A, Constable F and Mehle N. SpringerBriefs in Agriculture. Springer, Switzerland, 1–15 pp.

    Google Scholar 

  • Bertamini M, Nedunchezhian N (2001a) Decline of photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase and soluble protein contents, nitrate reductase and photosynthetic activities, and changes in tylakoid membrane protein pattern in canopy shade grapevine (Vitis vinifera L. cv. Chardonnay) Photosynthetica 39, 529–537.

    Article  CAS  Google Scholar 

  • Bertamini M, Nedunchezhian N (2001b) Effects of phytoplasma [“stolbur”-subgroup (“bois noir”-BN)] on photosynthetic pigments, saccharides, ribulose 1,5-bisphosphate carboxylase, nitrate and nitrite reductases, and photosynthetic activities in field-grown grapevine (Vitis vinifera L. cv. Chardonnay). Photosynthetica 39, 119–122.

    Article  CAS  Google Scholar 

  • Bertamini M, Nedunchezhian N, Tomasi F, Grando M. (2002) Phytoplasma [“stolbur”-subgroup (“bois noir”-BN)] infection inhibits photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase and photosynthetic activities in field grown grapevine (Vitis vinifera L. cv. Chardonnay) leaves. Physiological and Molecular Plant Pathology 61, 357–366.

    Article  CAS  Google Scholar 

  • Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nature Revue in Molecular Cell Biology 16, 727–741.

    Article  CAS  Google Scholar 

  • Christensen NM, Axelsen KB, Nicolaisen M, Schulz A (2005) Phytoplasmas and their interactions with hosts. Trends in Plant Science 10, 526–535.

    Article  CAS  PubMed  Google Scholar 

  • Contaldo N, Bertaccini A, Paltrinieri S, Windsor HM, Windsor DG (2012) Axenic culture of plant pathogenic phytoplasmas. Phytopathologia Mediterranea 51, 607–617.

    CAS  Google Scholar 

  • Contaldo N, Satta E, Zambon Y, Paltrinieri S, Bertaccini A (2016) Development and evaluation of different complex media for phytoplasma isolation and growth. Journal of Microbiological Methods 127, 105–110.

    Article  CAS  PubMed  Google Scholar 

  • Contaldo N, D’Amico G, Paltrinieri S, Diallo HA, Bertaccini A, Arocha Rosete Y (2019) Molecular and biological characterization of phytoplasmas from coconut palms affected by the lethal yellowing disease in Africa. Microbiological Research 223–225, 51–57.

    Article  PubMed  CAS  Google Scholar 

  • Covington Dunn E, Roitsch T, Dermastia M (2016) Determination of the activity signature of key carbohydrate metabolism enzymes in phenolic-rich grapevine tissues. Acta Chimica Slovenica 63, 757–762.

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Biochemistry and Molecular Biology of Plants. Eds Buchanan B, Gruissem W and Jones R. American Society of Plant Physiologists, Rockville, Maryland, United States of America, 1250–1318 pp.

    Google Scholar 

  • Dermastia M (2017) Interactions between grapevines and grapevine yellows phytoplasmas BN and FD. In: Grapevine yellows diseases and their phytoplasma agents. Eds Dermastia M, Bertaccini A, Constable F and Mehle N. SpringerBriefs in Agriculture. Springer, Switzerland, 47–67 pp.

    Google Scholar 

  • Dermastia M, Nikolic P, Chersicola M, Gruden K (2015) Transcriptional profiling in infected and recovered grapevine plant responses to ‘Candidatus Phytoplasma solani’. Phytopathogenic Mollicutes 5(1-Supplement), S123-S124.

    Article  Google Scholar 

  • Ehness R, Ecker M, Godt DE, Roitsch T (1997) Glucose and stress independently regulate source and sink metabolism and defense mechanisms via signal transduction pathways involving protein phosphorylation. Plant Cell 9, 1825–1841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehya F, Monavarfeshani A, Mohseni Fard E, Karimi Farsad L, Khayam Nekouei M, Mardi M, Hosseini Salekdeh G (2013) Phytoplasma-responsive microRNAs modulate hormonal, nutritional, and stress signalling pathways in Mexican lime trees. Plos One 8, e66372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endeshaw ST, Murolo S, Romanazzi G, Neri D (2012) Effects of “bois noir” on carbon assimilation, transpiration, stomatal conductance of leaves and yield of grapevine (Vitis vinifera) cv. Chardonnay. Physiology of Plant 145, 286–295.

    Article  CAS  PubMed  Google Scholar 

  • Eom J-S, Chen L-Q, Sosso D, Julius BT, Lin IW, Qu XQ, Braun DM, Frommer WB (2015) SWEETs, transporters for intracellular and intercellular sugar translocation. Current Opinion on Plant Biology 25, 53–62.

    Article  CAS  Google Scholar 

  • Fan G, Dong Y, Deng M, Zhao Z, Niu S, Xu E (2014) Plant-pathogen interaction, circadian rhythm, and hormone-related gene expression provide indicators of phytoplasma infection in Paulownia fortunei. International Journal of Molecular Science 15, 23141–23162.

    Article  CAS  Google Scholar 

  • Fan G, Cao X, Niu S, Deng M, Zhao Z, Dong Y (2015a) Transcriptome, microRNA, and degradome analyses of the gene expression of paulownia with phytoplasma. BMC Genomics 16, 896.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan G, Niu S, Xu T, Deng M, Zhao Z, Wang Y, Cao L, Wang Z (2015b) Plant–pathogen interaction-related microRNAs and their targets provide indicators of phytoplasma infection in Paulownia tomentosa × Paulownia fortunei. Plos One 10, e0140590.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan G, Xu E, Deng M, Zhao Z, Niu S (2015c) Phenylpropanoid metabolism, hormone biosynthesis and signal transduction-related genes play crucial roles in the resistance of Paulownia fortunei to paulownia witches’ broom phytoplasma infection. Genes Genomics 37, 913–929.

    Article  CAS  Google Scholar 

  • Fan G, Niu S, Zhao Z, Cao Y (2016) Identification of microRNAs and their targets in Paulownia fortunei plants free from phytoplasma pathogen after methyl methane sulfonate treatment. Biochimic 127, 271–280.

    Article  CAS  PubMed  Google Scholar 

  • Fan G, Cao Y, Wang Z (2018) Regulation of long noncoding RNAs responsive to phytoplasma infection in Paulownia tomentosa. International Journal of Genomics 2018, 3174352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan X-P, Liu W, Qiao Y-S, Shang Y-J, Wang G-P, Tian X, Han Y-H, Bertaccini A (2017) Comparative transcriptome analysis of Ziziphus jujuba infected by jujube witches’ broom phytoplasmas. Science Horticulturae 226, 50–58.

    Article  CAS  Google Scholar 

  • Gai Y-P, Li Y-Q, Guo F-Y, Yuan CZ, Mo YY, Zhang HL, Wang H, Ji XL (2014a) Analysis of phytoplasma-responsive sRNAs provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease. Science Reporter 4, 5378.

    Article  CAS  Google Scholar 

  • Gai YP, Han XJ, Li YQ, Yuan CZ, Mo YY, Guo FY, Liu QX, Ji XL (2014b) Metabolomic analysis reveals the potential metabolites and pathogenesis involved in mulberry yellow dwarf disease. Plant, Cell and Environment 37, 1474–1490.

    Article  CAS  PubMed  Google Scholar 

  • Gai Y-P, Zhao H-N, Zhao Y-N, Zhu B-S, Yuan S-S, Li S, Guo F-Y, Ji X-L (2018) MiRNA-seq-based profiles of miRNAs in mulberry phloem sap provide insight into the pathogenic mechanisms of mulberry yellow dwarf disease. Science Reporter 8, 812.

    Article  CAS  Google Scholar 

  • Giorno F, Guerriero G, Biagetti M, Ciccotti AM, Baric S (2013) Gene expression and biochemical changes of carbohydrate metabolism in in vitro micro-propagated apple plantlets infected by ‘Candidatus Phytoplasma mali’. Plant Physiology and Biochemistry 70, 311–317.

    Article  CAS  PubMed  Google Scholar 

  • Guthrie JN, Walsh KB, Scott PT, Rasmussen TS (2001) The phytopathology of Australian papaya dieback: a proposed role for the phytoplasma. Physiological and Molecular Plant Pathology 58, 23–30.

    Article  Google Scholar 

  • Hren M, Nikolić P, Rotter A, Blejec A, Terrier N, Ravnikar M, Dermastia M, Gruden K (2009) “Bois noir” phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genomics 10, 460.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jagoueix-Eveillard S, Tarendeau F, Guolter K, Danet J-L, Bové J-M, Garnier M (2001) Catharanthus roseus genes regulated differentially by mollicute infections. Molecular Plant-Microbe Interactions 14, 225–233.

    Article  CAS  PubMed  Google Scholar 

  • Ji X, Gai Y, Zheng C, Mu Z (2009) Comparative proteomic analysis provides new insights into mulberry dwarf responses in mulberry (Morus alba L.). Proteomics 9, 5328–5339.

    Article  CAS  PubMed  Google Scholar 

  • Ji X, Gai Y, Lu B, Zheng C, Mu Z (2010) Shotgun proteomic analysis of mulberry dwarf phytoplasma. Proteome Science 8, 20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Junqueira A, Bedendo I, Pascholati S (2004) Biochemical changes in corn plants infected by the maize bushy stunt phytoplasma. Physiological and Molecular Plant Pathology 65, 181–185.

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Research 38, D355-D360.

    Article  CAS  PubMed  Google Scholar 

  • Kitazawa Y, Iwabuchi N, Himeno M, Sasano M, Koinuma H, Nijo T, Tomomitsu T, Yoshida T, Okano Y, Yoshikawa N, Maejima K, Oshima K, Namba S (2017) Phytoplasma-conserved phyllogen proteins induce phyllody across the Plantae by degrading floral MADS domain proteins. Journal of Experimental Botany 68, 2799–2811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinions in Plant Biology 7, 235–246.

    Article  CAS  Google Scholar 

  • Landi L, Romanazzi G (2011) Seasonal variation of defense-related gene expression in leaves from “bois noir” affected and recovered grapevines. Journal of Agricultural Food Chemistry 59, 6628–6637.

    Article  CAS  PubMed  Google Scholar 

  • Lenz D, May P, Walther D (2011) Comparative analysis of miRNAs and their targets across four plant species. BMC Research Notes 4, 483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lepka P, Stitt M, Moll E, Seemüller E (1999) Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiological and Molecular Plant Pathology 55, 59–68.

    Article  CAS  Google Scholar 

  • Li M, Feng F, Cheng L (2012) Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. Plos One 7, e33055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L-YD, Tseng H-I, Lin C-P, Lin YY, Huang YH, Huang CK, Chang TH, Lin SS (2014) High-throughput transcriptome analysis for studying the leafy flower transition of Catharanthus roseus induced by peanut witches’ broom phytoplasma infection. Plant Cell Physiology 55, 942–957.

    Article  CAS  PubMed  Google Scholar 

  • Luge T, Kube M, Freiwald A, Meierhofer D, Seemüller E, Sauer S (2014) Transcriptomics assisted proteomic analysis of Nicotiana occidentalis infected by ‘Candidatus Phytoplasma mali’ strain AT. Proteomics 14, 1882–1889.

    Article  CAS  PubMed  Google Scholar 

  • Machenaud J, Henri R, Dieuaide-Noubhani M, Pracros P, Renaudin J, Eveillard S (2007) Gene expression and enzymatic activity of invertases and sucrose synthase in Spiroplasma citri or “stolbur” phytoplasma infected plants. Bulletin of Insectology 60, 219–220.

    Google Scholar 

  • MacLean AM, Sugio A, Makarova OV, Findlay KC, Grieve VM, Tóth R, Nicolaisen M, Hogenhout SA (2011) Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiology 157, 831–841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLean AM, Orlovskis Z, Kowitwanich K, Zdziarska AM, Angenent GC, Immink RGH, Hogenhout SA (2014) Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. Plos Biology 12, e1001835.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maejima K, Iwai R, Himeno M, Komatsu K, Kitazawa Y, Fujita N, Ishikawa K, Fukuoka M, Minato N, Yamaji Y, Oshima K, Namba S (2014) Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody. Plant Journal 78, 541–554.

    Article  CAS  Google Scholar 

  • Maejima K, Kitazawa Y, Tomomitsu T, Yusa A, Neriya Y, Himeno M, Yamaji Y, Oshima K, Namba S (2015) Degradation of class E MADS-domain transcription factors in Arabidopsis by a phytoplasmal effector, phyllogen. Plant Signal Behaviour 10, e1042635.

    Article  CAS  Google Scholar 

  • Mardi M, Karimi Farsad L, Gharechahi J, Salekdeh GH (2015) In-depth transcriptome sequencing of Mexican lime trees infected with ‘Candidatus Phytoplasma aurantifolia’. Plos One 10, e0130425.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Margaria P, Palmano S (2011) Response of the Vitis vinifera L. cv. Nebbiolo proteome to “flavescence dorée” phytoplasma infection. Proteomics 11, 212–224.

    Article  CAS  PubMed  Google Scholar 

  • Margaria P, Abbà S, Palmano S (2013) Novel aspects of grapevine response to phytoplasma infection investigated by a proteomic and phospho-proteomic approach with data integration into functional networks. BMC Genomics 14, 38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margaria P, Ferrandino A, Caciagli P, Kedrina O, Schubert A, Palmano S (2014) Metabolic and transcript analysis of the flavonoid pathway in diseased and recovered Nebbiolo and Barbera grapevines (Vitis vinifera L.) following infection by “flavescence dorée” phytoplasma. Plant, Cell and Environment 37, 2183–2200.

    Article  CAS  Google Scholar 

  • Maust BE, Espadas F, Talavera C, Aguilar M, Santamaría JM, Oropeza C (2003) Changes in carbohydrate metabolism in coconut palms infected with the lethal yellowing phytoplasma. Phytopathology 93, 976–981.

    Article  CAS  PubMed  Google Scholar 

  • Minato N, Himeno M, Hoshi A, Maejima K, Komatsu K, Takebayashi Y, Kasahara H, Yusa A, Yamaji Y, Oshima K, Kamiya Y, Namba S (2015) The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways. Science Reports 4, 7399.

    Article  CAS  Google Scholar 

  • Monavarfeshani A, Mirzaei M, Sarhadi E, Amirkhani A, Khayam Nekouei M, Haynes PA, Mardi M, Salekdeh GH (2013) Shotgun proteomic analysis of the Mexican lime tree infected with ‘Candidatus Phytoplasma aurantifolia’. Journal of Proteome Research 12, 785–795.

    Article  CAS  PubMed  Google Scholar 

  • Musetti R, Buxa S V, De Marco F, Loschi A, Polizzotto R, Kogel KH, van Bel AJ (2013a) Phytoplasma-triggered Ca(2+) influx is involved in sieve-tube blockage. Molecular Plant-Microbe Interactions 26, 379–386.

    Article  CAS  PubMed  Google Scholar 

  • Musetti R, Farhan K, De Marco F, Polizzotto R, Paolacci A, Ciaffi M, Ermacora P, Grisan S, Santi S, Osler R (2013b) Differentially-regulated defence genes in Malus domestica during phytoplasma infection and recovery. European Journal of Plant Pathology 136, 13–19.

    Article  CAS  Google Scholar 

  • Nejat N, Cahill DM, Vadamalai G, Ziemann M, Rookes J, Naderali N (2015) Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection. Molecular Genetic Genomics 290, 1899–1910.

    Article  CAS  Google Scholar 

  • Nicolaisen M, Christensen NM (2007) Phytoplasma induced changes in gene expression in poinsettia. Bulletin of Insectology 60, 215–216.

    Google Scholar 

  • Niu S, Fan G, Deng M, Zhao Z, Xu E, Cao L (2016) Discovery of microRNAs and transcript targets related to witches’ broom disease in Paulownia fortunei by high-throughput sequencing and degradome approach. Molecular Genetic Genomics 291, 181–191.

    Article  CAS  Google Scholar 

  • Nozawa M, Miura S, Nei M (2012) Origins and evolution of microRNA genes in plant species. Genome Biological Evolution 4, 230–239.

    Article  CAS  Google Scholar 

  • Oshima K, Ishii Y, Kakizawa S, Sugawara K, Neriya Y, Misako H, Minato N, Miura C, Shiraishi T, Yamaji Y, Namba S (2011) Dramatic transcriptional changes in an intracellular parasite enable host switching between plant and insect. Plos One 6, e23242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paolacci AR, Catarcione G, Ederli L, Zadra C, Pasqualini S, Badiani M, Musetti R, Santi S, Ciaffi M (2017) Jasmonate-mediated defence responses, unlike salicylate-mediated responses, are involved in the recovery of grapevine from bois noir disease. BMC Plant Biology 17, 118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prezelj N, Covington E, Roitsch T, Gruden K, Fragner L, Weckwerth W, Chersicola M, Vodopivec M, Dermastia M (2016a) Metabolic consequences of infection of grapevine (Vitis vinifera L.) cv. Modra Frankinja with “flavescence dorée” phytoplasma Frontiers in Plant Science 7, 711.

    Google Scholar 

  • Prezelj N, Fragener L, Weckwerth W, Dermastia M (2016b) Metabolome of grapevine leaf vein-enriched tissue infected with ‘Candidatus Phytoplasma solani’. Mitteilungen Klosterneubg Rebe und Wein, Obs und Früchteverwertung 66, 74–78.

    CAS  Google Scholar 

  • Punelli F, Al Hassan M, Fileccia V, Uva P, Pasquini G, Martinelli F (2016) A microarray analysis highlights the role of tetrapyrrole pathways in grapevine responses to “stolbur” phytoplasma, phloem virus infections and recovered status. Physiological and Molecular Plant Pathology 93, 129–137.

    Article  CAS  Google Scholar 

  • Roitsch T (1999) Source-sink regulation by sugar and stress. Current Opinions in Plant Biology 2, 198–206.

    Article  CAS  Google Scholar 

  • Roitsch T, González MC (2004) Function and regulation of plant invertases: sweet sensations. Trends in Plant Science 9, 606–613.

    Article  CAS  PubMed  Google Scholar 

  • Rojas CM, Senthil-Kumar M, Tzin V, Mysore KS (2014) Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Frontieres in Plant Science 5, 17.

    Google Scholar 

  • Rotter A, Camps C, Lohse M, Kappel C, Pilati S, Hren M, Stitt M, Coutos-Thévenot P, Moser C, Usadel B, Delrot S, Gruden K (2009) Gene expression profiling in susceptible interaction of grapevine with its fungal pathogen Eutypa lata: extending MapMan ontology for grapevine. BMC Plant Biology 9, 104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rotter A, Nikolić P, Turnšek N, Kogovšek P, Blejec A, Gruden K, Dermastia M (2018) Statistical modeling of long-term grapevine response to ‘Candidatus Phytoplasma solani’ infection in the field. European Journal of Plant Pathology 150, 653–668.

    Article  Google Scholar 

  • Rusjan D, Mikulic-Petkovsek M (2015) Phenolic responses in 1-year-old canes of Vitis vinifera cv. Chardonnay induced by grapevine yellows (“bois noir”). Australian Journal of Grape and Wine Research 21, 123–134.

    Article  CAS  Google Scholar 

  • Rusjan D, Halbwirth H, Stich K, Gruden K, Fragner L, Weckwerth W, Chersicola M, Vodopivec M, Dermastia M (2012a) Biochemical response of grapevine variety Chardonnay (Vitis vinifera L.) to infection with grapevine yellows (“bois noir”). European Journal of Plant Pathology 134, 231–237.

    Article  CAS  Google Scholar 

  • Rusjan D, Veberič R, Mikulič-Petkovšek M (2012b) The response of phenolic compounds in grapes of the variety Chardonnay (Vitis vinifera L.) to the infection by phytoplasma “bois noir”. European Journal of Plant Pathology 133, 965–974.

    Article  CAS  Google Scholar 

  • Santi S, De Marco F, Polizzotto R, Grisan S, Musetti R (2013a) Recovery from “stolbur” disease in grapevine involves changes in sugar transport and metabolism. Frontieres in Plant Science 4, 171.

    Google Scholar 

  • Santi S, Grisan S, Pierasco A, De Marco F, Musetti R (2013b) Laser microdissection of grapevine leaf phloem infected by “stolbur” reveals site-specific gene responses associated to sucrose transport and metabolism. Plant, Cell and Environment 36, 343–355.

    Article  CAS  PubMed  Google Scholar 

  • Snyman MC, Solofoharivelo M-C, Souza-Richards R, Stephan D, Murray S, Burger JT (2017) The use of high-throughput small RNA sequencing reveals differentially expressed microRNAs in response to aster yellows phytoplasma-infection in Vitis vinifera cv. Chardonnay. Plos One 12, e0182629.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sudisha J, Sharathchandra RG, Amruthesh KN, Kumar A, Shetty HS (2012) Pathogenesis related proteins in plant defense response. In: Plant Defence: Biological Control. Springer Netherlands, Dordrecht, The Netherlands, 379–403 pp.

    Google Scholar 

  • Sugio A, Kingdom HN, MacLean AM, Grieve VM, Hogenhout SA (2011) Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of the National Academy of Science United States of America 108, E1254-E1263.

    Article  CAS  Google Scholar 

  • Sunkar R, Li Y-F, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends in Plant Science 17, 196–203.

    Article  CAS  PubMed  Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant Journal 37, 914–939.

    Article  CAS  Google Scholar 

  • Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biology 7, 581–591.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Liu W, Fan G, Zhai X, Zhao Z, Dong Y, Deng M, Cao Y (2017) Quantitative proteome-level analysis of paulownia witches’ broom disease with methyl methane sulfonate assistance reveals diverse metabolic changes during the infection and recovery processes. PeerJ 5, e3495.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang H, Ye X, Li J, Tan B, Chen P, Cheng J, Wang W, Zheng X, Feng J (2018) Transcriptome profiling analysis revealed co-regulation of multiple pathways in jujube during infection by ‘Candidatus Phytoplasma ziziphi’. Gene 665, 82–95.

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Wang Z, Li X, Zhao Z, Deng M, Dong Y, Cao X, Fan G (2017) Comparative proteomic analysis of Paulownia fortunei response to phytoplasma infection with dimethyl sulfate treatment. International Journal of Genomics 2017, 1–11.

    Article  CAS  Google Scholar 

  • Yang C-Y, Huang Y-H, Lin C-P, Lin YY, Hsu HC, Wang CN, Liu LY, Shen BN, Lin SS (2015a) MicroRNA396-targeted SHORT VEGETATIVE PHASE is required to repress flowering and is related to the development of abnormal flower symptoms by the phyllody symptoms1 effector. Plant Physiology 168, 1702–1716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Wen L, Zhu H (2015b) Unveiling the hidden function of long non-coding RNA by identifying its major partner-protein. Cell Bioscience 5, 59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ye X, Wang H, Chen P, Bing Fu, Zhang M, Li J, Zheng X, Tan B, Feng J (2017) Combination of iTRAQ proteomics and RNA-seq transcriptomics reveals multiple levels of regulation in phytoplasma-infected Ziziphus jujuba Mill. Horticultural Research 4, 17080.

    Article  CAS  Google Scholar 

  • Zabotin AI, Barysheva TS, Trofimova OI, Lozovaya V, Widholm J (2002) Regulation of callose metabolism in higher plant cells in vitro. Russian Journal of Plant Physiology 49, 792–798.

    Article  CAS  Google Scholar 

  • Zhong B-X, Shen Y-W (2004) Accumulation of pathogenesis-related type-5 like proteins in phytoplasma-infected garland chrysanthemum Chrysanthemum coronarium. Acta Biochimica Biophysica Sinica (Shanghai) 36, 773–779.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dermastia, M., Kube, M., Šeruga-Musić, M. (2019). Transcriptomic and Proteomic Studies of Phytoplasma-Infected Plants. In: Bertaccini, A., Oshima, K., Kube, M., Rao, G. (eds) Phytoplasmas: Plant Pathogenic Bacteria - III. Springer, Singapore. https://doi.org/10.1007/978-981-13-9632-8_3

Download citation

Publish with us

Policies and ethics