Skip to main content

Genome Sequencing

  • Chapter
  • First Online:
Phytoplasmas: Plant Pathogenic Bacteria - III

Abstract

Genome sequences are of major importance to phytoplasma research, as they provide the blueprint for understanding evolution, metabolism and virulence factors of phytoplasmas. Genome projects on these obligate parasites start from metagenomic templates taken from colonised plant- or insect-vector material, meaning that they have to deal with high amounts of untargeted DNA. This problem separates phytoplasmas from the majority of other bacterial genome projects, and methodological approaches deal with it by using strong colonised tissues and enriching phytoplasma DNA. The impact of this situation was severe for the first genome projects using Sanger sequencing, while the most recent phytoplasma genome projects have tried to overcome the problem through huge amounts of reads derived from next-generation sequencing approaches, thus enabling the generation of draft sequences or even complete phytoplasma genomes. Genomic sequence determination is hampered by their repeat-rich content, resulting in conflicts during the sequence assemblies in addition. An overview is provided of the strategies applied to phytoplasma genome sequencing and data processing, as well as currently available data on these particular bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Okaily AA (2016) HGA: de novo genome assembly method for bacterial genomes using high coverage short sequencing reads. BMC Genomics 17, 193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen MT, Liefting LW, Havukkala I, Beever RE (2013) Comparison of the complete genome sequence of two closely related isolates of ‘Candidatus Phytoplasma australiense’ reveals genome plasticity. BMC Genomics 14, 529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arashida R, Kakizawa S, Hoshi A, Ishii Y, Jung H-Y, Kagiwada S, Yamaji Y, Oshima K, Namba S (2008) Heterogeneic dynamics of the structures of multiple gene clusters in two pathogenetically different lines originating from the same phytoplasma. DNA and Cell Biology 27, 209–217.

    Article  CAS  PubMed  Google Scholar 

  • Bai X, Zhang J, Ewing A, Miller SA, Jancso Radek A, Shevchenko DV, Tsukerman K, Walunas T, Lapidus A, Campbell JW, Hogenhout SA (2006) Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. Journal of Bacteriology 188, 3682–3696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barre A, De Daruvar A, Blanchard A (2004) MolliGen, a database dedicated to the comparative genomics of Mollicutes. Nucleic Acids Research 32, D307–D310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendtsen JD, Nielsen H, Von Heijne G, Brunak S (2004) Improved prediction of signal peptides: signalP 3.0. Journal of Molecular Biology 340, 783–95.

    Article  CAS  Google Scholar 

  • Bennett GM, Abba S, Kube M, Marzachì C (2016) Complete genome sequences of the obligate symbionts ‘Candidatus Sulcia muelleri’ and ‘Ca. Nasuia deltocephalinicola’ from the pestiferous leafhopper Macrosteles quadripunctulatus (Hemiptera: Cicadellidae). Genome Announcements 4, e01604–15.

    Google Scholar 

  • Bodenteich A, Chissoe S, Wang YF, Roe BA (1994) Shotgun cloning as the strategy of choice to generate templates for high-throughput dideoxynucleotide sequencing. In: Automated DNA Sequencing and Analysis Techniques. Eds Adams M, Fields C, Venter JC, Academic Press, San Diego, California United States of America.

    Chapter  Google Scholar 

  • Bonfield JK, Smith K, Staden R (1995) A new DNA sequence assembly program. Nucleic Acids Research 23, 4992–4999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carver T, Berriman M, Tivey A, Patel C, Bohme U, Barrell BG, Parkhill J, Rajandream MA (2008) Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 24, 2672–2676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caspi R, Billington R, Fulcher CA, Keseler IM, Kothari, Krummenacker M, Latendresse M, Midford PE, Ong Q, Ong WK, Paley S, Subhraveti P, Karp PD (2018) The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Research 46, D633–D639.

    Article  CAS  PubMed  Google Scholar 

  • Chang SH, Cho ST, Chen CL, Yang JY, Kuo CH (2015) Draft genome sequence of a 16SrII-A Subgroup phytoplasma associated with purple coneflower (Echinacea purpurea) witches’ broom disease in Taiwan. Genome Announcements 3, e01398–15.

    Google Scholar 

  • Chen W, Li Y, Wang Q, Wang N, Wu Y (2014) Comparative genome analysis of wheat blue dwarf phytoplasma, an obligate pathogen that causes wheat blue dwarf disease in China. Plos One 9, e96436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chung WC, Chen LL, Lo WS, Lin CP, Kuo CH (2013) Comparative analysis of the peanut witches’ broom phytoplasma genome reveals horizontal transfer of potential mobile units and effectors. Plos One 8, e62770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999a) Improved microbial gene identification with GLIMMER. Nucleic Acids Research 27, 4636–4641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delcher AL, Kasif S, Fleischmann RD, Peterson J, White O, Salzberg SL (1999b) Alignment of whole genomes. Nucleic Acids Research 27, 2369–2376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Research 8, 175–185.

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research 44, D279–D285.

    Article  CAS  PubMed  Google Scholar 

  • Fischer A, Santana-Cruz I, Wambua L, Olds C, Midega C, Dickinson M, Kawicha P, Khan Z, Masiga D, Jores J, Schneider B (2016) Draft genome sequence of ‘Candidatus Phytoplasma oryzae’ strain Mbita1, the causative agent of napier grass stunt disease in Kenya. Genome Announcements 4, e00297–16.

    Google Scholar 

  • Frangeul L, Nelson KE, Buchrieser C, Danchin A, Glaser P, Kunst F (1999) Cloning and assembly strategies in microbial genome projects. Microbiology 145, 2625–2634.

    Article  CAS  PubMed  Google Scholar 

  • Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM, Fritchman RD, Weidman JF, Small KV, Sandusky M, Fuhrmann J, Nguyen D, Utterback TR, Saudek DM, Phillips CA, Merrick JM, Tomb JF, Dougherty BA, Bott KF, Hu PC, Lucier TS, Peterson SN, Smith HO, Hutchison 3th CA, Venter JC (1995) The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403.

    Article  CAS  PubMed  Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Research 8, 195–202.

    Article  CAS  PubMed  Google Scholar 

  • Grigoriev A (1998) Analyzing genomes with cumulative skew diagrams. Nucleic Acids Research 26, 2286–2290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hicks CA, Barker EN, Brady C, Stokes CR, Helps CR, Tasker S (2014) Non-ribosomal phylogenetic exploration of Mollicute species: new insights into haemoplasma taxonomy. Infectious Genetic Evolution 23, 99–105.

    Article  CAS  Google Scholar 

  • Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, Selengut JD, Sigrist CJ, Thimma M, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C (2009) InterPro: the integrative protein signature database. Nucleic Acids Research 37, D211–D215.

    Article  CAS  PubMed  Google Scholar 

  • Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • IRPCM (2004) ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology 54, 1243–1255.

    Google Scholar 

  • Jomantiene R, Davis RE (2006) Clusters of diverse genes existing as multiple, sequence-variable mosaics in a phytoplasma genome. FEMS Microbiology Letters 255, 59–65.

    Article  CAS  PubMed  Google Scholar 

  • Jomantiene R, Zhao Y, Davis RE (2007) Sequence-variable mosaics: composites of recurrent transposition characterizing the genomes of phylogenetically diverse phytoplasmas. DNA and Cell Biology 26, 557–564.

    Article  CAS  PubMed  Google Scholar 

  • Kakizawa S, Makino A, Ishii Y, Tamaki H, Kamagata Y (2014) Draft genome sequence of ‘Candidatus Phytoplasma asteris’ strain OY-V, an unculturable plant-pathogenic bacterium. Genome Announcements 2, e00944–14

    Google Scholar 

  • Kall L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. Journal of Molecular Biology 338, 1027–1036.

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28, 27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Lindsey RL, Garcia-Toledo L, Loparev VN, Rowe LA, Batra D, Juieng P, Stoneburg D, Martin H, Knipe K, Smith P, Strockbine N (2018) High-quality whole-genome sequences for 59 historical Shigella strains generated with PacBio sequencing. Genome Announcements 6, e00282–18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirkpatrick BC, Stenger DC, Morris J, Purcell AH (1987) Cloning and detection of DNA from a nonculturable plant pathogenic mycoplasma-like organism. Science 238, 197–200.

    Article  CAS  PubMed  Google Scholar 

  • Kube M, Schneider B, Kuhl H, Dandekar T, Heitmann K, Migdoll AM, Reinhardt R, Seemüller E (2008) The linear chromosome of the plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’. BMC Genomics 9, 306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kube M, Mitrovic J, Duduk B, Rabus R, Seemüller E (2012) Current view on phytoplasma genomes and encoded metabolism. Scientific World Journal 2012, 185942.

    Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33, 1870–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research 35, 3100–3108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee I-M, Gundersen-Rindal DE, Davis RE, Bartoszyk IM (1998) Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. International Journal of Systematic and Evolutionary Microbiology 48, 1153–1169.

    CAS  Google Scholar 

  • Lee I-M, Zhao Y, Bottner KD (2005) Novel insertion sequence-like elements in phytoplasma strains of the aster yellows group are putative new members of the IS3 family. FEMS Microbiology Letters 242, 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Lee I-M, Shao J, Bottner-Parker KD, Gundersen-Rindal DE, Zhao Y, Davis RE (2015) Draft genome sequence of ‘Candidatus Phytoplasma pruni’ strain CX, a plant-pathogenic bacterium. Genome Announcements 3, e01117–15.

    Google Scholar 

  • Li L, Stoeckert CJ Jr., Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Research 13, 2178–2189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liefting LW, Andersen MT, Lough TJ, Beever RE (2006) Comparative analysis of the plasmids from two isolates of ‘Candidatus Phytoplasma australiense’. Plasmid 56, 138–144.

    Article  CAS  PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25, 955–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcone C, Neimark H, Ragozzino A, Lauer U, Seemüller E (1999) Chromosome sizes of phytoplasmas composing major phylogenetic groups and subgroups. Phytopathology 89, 805–810.

    Article  CAS  PubMed  Google Scholar 

  • Miller JR, Koren S, Sutton G (2010) Assembly algorithms for next-generation sequencing data. Genomics 95, 315–327.

    Article  CAS  PubMed  Google Scholar 

  • Mitrovic J, Siewert C, Duduk B, Hecht J, Molling K, Broecker F, Beyerlein P, Buttner C, Bertaccini A, Kube M (2014) Generation and analysis of draft sequences of “stolbur” phytoplasma from multiple displacement amplification templates. Journal of Molecular Microbiological Biotechnology 24, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Mitrovic J, Smiljkovic M, Seemüller E, Reinhardt R, Hüttel B, Büttner C, Bertaccini A, Kube M., Duduk B (2015) Differentiation of ‘Candidatus Phytoplasma cynodontis’ based on 16S rRNA and groEL genes and identification of a new subgroup, 16SrXIV-C. Plant Disease 99, 1578–1583.

    Article  PubMed  CAS  Google Scholar 

  • Muir P, Li S, Lou S, Wang D, Spakowicz DJ, Salichos L, Zhang J, Weinstock GM, Isaacs F, Rozowsky J, Gerstein M (2016) The real cost of sequencing: scaling computation to keep pace with data generation. Genome Biology 17, 53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neimark H, Kirkpatrick BC (1993) Isolation and characterization of full-length chromosomes from non-culturable plant-pathogenic mycoplasma-like organisms. Molecular Microbiology 7, 21–28.

    Article  CAS  PubMed  Google Scholar 

  • Orlovskis Z, Canale MC, Haryono M, Lopes JRS, Kuo CH, Hogenhout SA (2017) A few sequence polymorphisms among isolates of maize bushy stunt phytoplasma associate with organ proliferation symptoms of infected maize plants. Annals of Botany 119, 869–884.

    CAS  PubMed  Google Scholar 

  • Oshima K, Shiomi T, Kuboyama T, Sawayanagi T, Nishigawa H, Kakizawa S, Miyata S, Ugaki M, Namba S (2001) Isolation and characterization of derivative lines of the onion yellows phytoplasma that do not cause stunting or phloem hyperplasia. Phytopathology 91, 1024–1029.

    Article  CAS  PubMed  Google Scholar 

  • Oshima K, Kakizawa S, Nishigawa H, Jung H-Y, Wei W, Suzuki S, Arashida R, Nakata D, Miyata S, Ugaki M, Namba S (2004) Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genetics 36, 27–29.

    Article  CAS  PubMed  Google Scholar 

  • Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Reseach 42, D206–D214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pacifico D, Galetto L, Rashidi M, Abbà S, Palmano S, Firrao G, Bosco D, Marzachì C (2015) Decreasing global transcript levels over time suggest that phytoplasma cells enter stationary phase during plant and insect colonization. Applied and Environmental Microbiology 81, 2591–2602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quaglino F, Kube M, Jawhari M, Abou-Jawdah Y, Siewert C, Choueiri E, Sobh H, Casati P, Tedeschi R, Molino Lova M, Alma A, Bianco PA (2015) ‘Candidatus Phytoplasma phoenicium’ associated with almond witches’ broom disease: from draft genome to genetic diversity among strain populations. BMC Microbiology 15, 148.

    Google Scholar 

  • Razin S, Yogev D, Naot Y (1998) Molecular biology and pathogenicity of mycoplasmas. Microbiology and Molecular Biology Reviews 62, 1094–1156.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saccardo F, Martini M, Palmano S, Ermacora P, Scortichini M, Loi N, Firrao G (2012) Genome drafts of four phytoplasma strains of the ribosomal group 16SrIII. Microbiology 158, 2805–2814.

    Article  CAS  PubMed  Google Scholar 

  • Seruga-Music M, Samarzija I, Hogenhout SA, Haryono M, Cho ST, Kuo CH (2018) The genome of ‘Candidatus Phytoplasma solani’ strain SA-1 is highly dynamic and prone to adopting foreign sequences. Systematic and Applied Microbiology 42, 117–127.

    Article  CAS  PubMed  Google Scholar 

  • Sparks ME, Bottner-Parker KD, Gundersen-Rindal DE, Lee I-M (2018) Draft genome sequence of the New Jersey aster yellows strain of ‘Candidatus Phytoplasma asteris’. Plos One 13, e0192379.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strauss E (2009) Phytoplasma research begins to bloom. Science 325, 388–390.

    Article  CAS  PubMed  Google Scholar 

  • Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research 28, 33–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng JLL, Yeung ML, Chan E, Jia L, Lin GH, Huang Y, Tse H, Wong SSY, Sham PC, Lau SKP, Woo PCY (2017) PacBio but not Illumina technology can achieve fast, accurate and complete closure of the high GC, complex Burkholderia pseudomallei two-chromosome genome. Frontieres in Microbiology 8, 1448.

    Google Scholar 

  • Toruno TY, Seruga-Music MS, Simi S, Nicolaisen M, Hogenhout SA (2010) Phytoplasma PMU1 exists as linear chromosomal and circular extrachromosomal elements and has enhanced expression in insect vectors compared with plant hosts. Molecular Microbiology 77, 1406–1415.

    Article  CAS  PubMed  Google Scholar 

  • Town JR, Wist T, Perez-Lopez E, Olivier CY, Dumonceaux TJ (2018) Genome sequence of a plant-pathogenic bacterium ‘Candidatus Phytoplasma asteris’ strain TW1. Microbiology Resources Announcements 7, e01109–18.

    Google Scholar 

  • Tran-Nguyen LT, Kube M, Schneider B, Reinhardt R, Gibb KS (2008) Comparative genome analysis of ‘Candidatus Phytoplasma australiense’ (subgroup tuf-Australia I; rp-A) and ‘Ca. Phytoplasma asteris’ strains OY-M and AY-WB. Journal of Bacteriology 190, 3979–3991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Song L, Jiao Q, Yang S, Gao R, Lu X, Zhou G (2018) Comparative genome analysis of jujube witches’ broom phytoplasma, an obligate pathogen that causes jujube witches’ broom disease. BMC Genomics 19, 689.

    Google Scholar 

  • Wei W, Davis RE, Jomantiene R, Zhao Y (2008) Ancient, recurrent phage attacks and recombination shaped dynamic sequence-variable mosaics at the root of phytoplasma genome evolution. Proceedings of the National Academy of Sciences United States of America 105, 11827–11832.

    Article  CAS  Google Scholar 

  • Zamorano A, Fiore N (2016) Draft genome sequence of 16SrIII-J phytoplasma, a plant pathogenic bacterium with a broad spectrum of hosts. Genome Announcements 4, e00602–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zerbino DR (2010) Using the Velvet de novo assembler for short-read sequencing technologies. Current Protocols in Bioinformatics 11, Unit 11 5.

    Google Scholar 

  • Zhu Y, He Y, Zheng Z, Chen J, Wang Z, Zhou G (2017) Draft genome sequence of rice orange leaf phytoplasma from Guangdong, China. Genome Announcements 5, e00430–17.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kube, M., Duduk, B., Oshima, K. (2019). Genome Sequencing. In: Bertaccini, A., Oshima, K., Kube, M., Rao, G. (eds) Phytoplasmas: Plant Pathogenic Bacteria - III. Springer, Singapore. https://doi.org/10.1007/978-981-13-9632-8_1

Download citation

Publish with us

Policies and ethics