Skip to main content

Superconducting Linear Machines for Electrical Power Generation from the Oceanic Wave

  • Chapter
  • First Online:

Abstract

Several renewable energy sources (RESs) are accessible and the electrical machines have been employed in some of the hydro-electrical power generating stations for a long time. At present, oceanic waves are considered as one of the massive natural sources of energy. The sea waves are occasionally recognized as wind wave and they are conceived with higher energy capacity than the other existing widespread RESs. Traditional electrical generators are made of copper winding for electrical power generation by extraction of oceanic wave energy. The effectiveness of these generators depends on their winding due to copper loss. Hence, improved electrical technologies using superconducting windings, are desirable for fruitful generation of electrical energy from the oceanic wave energy. As a result, various types of advanced electrical machineries have been developed to harvest the kinetic energy from the oceanic wave and to produce electric energy. In this chapter, different types of linear generators including copper and superconducting windings, classification, construction, model, advantages, disadvantages and applications are described in an explicable way.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pelc R, Fujita RM (2002) Renewable energy from the ocean. Mar Policy 26(6):471–479

    Article  Google Scholar 

  2. Boud R (2003) Status and research and development priorities, wave and marine current energy. UK Department of Trade and Industry (DTI), DTI report, FES–R–132, AEAT report, AEAT/ENV/1054

    Google Scholar 

  3. Wang C, Shi W (2008) The ocean resources and reserves evaluation in China. In: International 1st national symposium on ocean energy, Hangzhou, China, pp 169–179

    Google Scholar 

  4. Zhang D, Li W, Lin Y (2009) Wave energy in China: current status and perspectives. Renew Energy 34(10):2089–2092

    Article  Google Scholar 

  5. Rodrigues L (2008) Wave power conversion systems for electrical energy production. In: International conference on renewable energies and power quality. Nova University of Lisbon. http://doi.org/10.24084/repqj06.380

    Article  Google Scholar 

  6. Magagna D, MacGillivray A, Jeffrey H, Hanmer C, Raventos A, Badcock AB, Tzimas E (2014) Wave and tidal energy strategic technology agenda. In: 11th international conference on European energy market (EEM14), pp 1–5

    Google Scholar 

  7. Jacobson PT, Hagerman G, Scott G (2011) Mapping and assessment of the United States ocean wave energy resource, Elec Power Res Institute, 2011 Technical report, No. 1024637

    Google Scholar 

  8. Muetze A, Vining JG (2006) Ocean wave energy conversion—a survey. In: International conference record, IEEE industry applications conference 41st IAS annual meeting, vol 3, pp 1410–1417

    Google Scholar 

  9. Wahyudie A, Jama M, Susilo TB, Mon BF, Shaaref H, Noura H (2017) Design and testing of a laboratory scale test rig for wave energy converters using a double-sided permanent magnet linear generator. IET Renew Power Gener 11(7):922–930

    Article  Google Scholar 

  10. Cruz J (2010) Ocean wave energy, current status and future perspectives. Green energy and technology. ISSN 1865–3529

    Google Scholar 

  11. Thorpe TW (2000) The wave energy programme in the UK and the European wave energy network. In: Proceedings of international conference wave energy, Aalborg, Denmark, pp 19–27

    Google Scholar 

  12. Gunn K, Williams CS (2012) Quantifying the global wave power resource. Renew Energy 44:296–304

    Article  Google Scholar 

  13. IEA (2015) Key world energy statistics, Paris, pp 24–27

    Google Scholar 

  14. Thorpe TW (1999) A brief review of wave energy, A report produced for The UK Department of Trade and Industry, No. ETSU-R120

    Google Scholar 

  15. Kazmierkowski MP, Jasinski M (2010) Power electronics for renewable sea wave energy. In: Proceedings of 12th international conference on optimization of electrical and electronic equipment, OPTIM, Brasov, Romania, pp 4–9

    Google Scholar 

  16. Ruellan M, Ahmed HB, Multon B, Josset C (2010) Design methodology for a SEAREV wave energy converter. IEEE Trans Energy Convers 25(3):760–767

    Article  ADS  Google Scholar 

  17. Elwood D, Yim SC, Prudell J, Stillinger C, Jouanne AV, Brekken T, Brown A, Paasch R (2010) Design, construction, and ocean testing of a taut-moored dual-body wave energy converter with a linear generator power take-off. Renew Energy 35(2):348–354

    Article  Google Scholar 

  18. Fredriksson G, Sjostrom BO, Cleasson L, Forsberg J (2000) Wave energy converter, US Patent No. 6,140,712

    Google Scholar 

  19. Weinstein A, Fredrikson G, Parks MJ, Nielsen K (2004) AquaBuOY- the offshore wave energy converter numerical modelling and optimization. In: International proceedings of MTTS/IEEE techno-ocean, 04 Conference, Kobe, Japan, pp 1988–1995

    Google Scholar 

  20. Wavestar. http://wavestarenergy.com/. Accessed 12 Apr 2019

  21. Prudell J, Stoddard M (2010) A permanent-magnet tubular linear generator for ocean wave energy conversion. IEEE Trans Ind Appl 46(6):2392–2400

    Article  Google Scholar 

  22. Zhang H, Nie Z, Xiao X, Aggarwal R, Kang Q, Ainslie M, Zhu J, Coombs T, Yuan W (2013) Design and simulation of SMES system using YBCO tapes for direct drive wave energy converters. IEEE Trans Appl Supercond 23(3). Article no. 5700704

    Google Scholar 

  23. Hodgins N, Keysan O, McDonald AS, Mueller MA (2012) Design and testing of a linear generator for wave energy applications. IEEE Trans Ind Electron 59(5):2094–2103

    Article  Google Scholar 

  24. Tubular and linear generator geometry. https://www.semanticscholar.org/paper/Permanent-magnet-linear-generator-for-renewable-vs.-Oprea-Martis/34e5d41f83ea8c69ba721127a30db8320ee5ca0e/figure/1. Accessed 22 Apr 2019

  25. de Falcão AFO (2010) Wave energy utilization: a review of the technologies. Renew Sustain Energy Rev 14(3):99–918

    Article  Google Scholar 

  26. Farrok O, Islam MR, Sheikh MRI (2016) Analysis of the oceanic wave dynamics for generation of electrical energy using a linear generator. J Energy 2016. Article ID 3437027

    Google Scholar 

  27. Huang L, Yu H, Hu M, Zhao J, Cheng Z (2011) A novel flux switching permanent-magnet linear generator for wave energy extraction application. IEEE Trans Magn 47(5):1034–1037

    Article  ADS  Google Scholar 

  28. Bashir MS, Farrok O, Islam MR, Zhu J (2018) N28EH permanent magnet based linear generator to prevent demagnetization during oceanic wave energy conversion. In: Proceedings of 21st international conference electrical machines and systems, Jeju, Korea (South), 7–10 October, pp 1836–1841

    Google Scholar 

  29. Bashir MS, Farrok O (2018) Harvesting oceanic wave energy by a linear generator using high graded N28EH permanent magnets. In: Proceedings of 4th international conference on electrical engineering and information & communication technology, Dhaka, Bangladesh, 3–15 September, pp 514–518

    Google Scholar 

  30. Farrok O, Ali MM (2014) A new technique to improve the linear generator designed for oceanic wave energy conversion. In: Proceedings of international conference on electrical and computer engineering, Dhaka, Bangladesh, 20–22 December, pp 714–717

    Google Scholar 

  31. Bashir MS, Farrok O (2019) Yttrium barium copper oxide superconductor used in a linear generator for high power generation from the oceanic wave. In: Proceedings of international conference on electrical, computer and communication engineering, Coxbazar, Bangladesh, 7–9 February, pp 1–5

    Google Scholar 

  32. Baker NJ, Raihan MAH, Almoraya AA, Burchell JW, Mueller MA (2018) Evaluating alternative linear vernier hybrid machine topologies for integration into wave energy converters. IEEE Trans Energy Convers 33(4):2007–2017

    Article  ADS  Google Scholar 

  33. Pan JF, Zou Y, Cheung N, Cao G (2014) On the voltage ripple reduction control of the linear switched reluctance generator for wave energy utilization. IEEE Trans Power Electron 29(10):5298–5307

    Article  ADS  Google Scholar 

  34. Farrok O, Islam MR, Sheikh MRI, Guo Y, Zhu J (2018) A split translator secondary stator permanent magnet linear generator for oceanic wave energy conversion. IEEE Trans Ind Electron 65(9):7600–7609

    Article  Google Scholar 

  35. Huang L, Yu H, Hu M, Liu C, Yuan B (2013) Research on a tubular primary permanent-magnet linear generator for wave energy conversions. IEEE Trans Magn 49(5):1917–1920

    Article  ADS  Google Scholar 

  36. Polinder H, Mecrow BC, Jack AG, Dickinson PG, Mueller MA (2005) Conventional and TFPM linear generators for direct-drive wave energy conversion. IEEE Trans Energy Convers 20(2):260–267

    Article  ADS  Google Scholar 

  37. Vermaak R, Kamper MJ (2012) Design aspects of a novel topology air-cored permanent magnet linear generator for direct drive wave energy converters. IEEE Trans Ind Electron 59(5):2104–2115

    Article  Google Scholar 

  38. Chung S-U, Kim J-W, Woo B-C, Hong D-K, Lee J-Y, Koo D-H (2011) A novel design of modular three-phase permanent magnet vernier machine with consequent pole rotor. IEEE Trans Magn 47(10):4215–4218

    Article  ADS  Google Scholar 

  39. Huo Y, Qu R, Gao Y, Jia S, Fan X (2017) Design of a linear Vernier permanent magnet machine with high thrust force density and low thrust force ripple. In: IEEE international electric machines and drives conference (IEMDC) 2017, pp 1–6

    Google Scholar 

  40. Vermaak R, Kamper MJ (2012) Experimental evaluation and predictive control of an air-cored linear generator for direct-drive wave energy converters. IEEE Trans Ind Appl 48(6):1817–1826

    Article  Google Scholar 

  41. Rinderknecht F (2013) An highly efficient energy converter for an hybrid vehicle concept—focused on the linear generator of the next generation. In: Proceedings of 8th international conference exhibition EVER, Monte Carlo, Monaca, pp 1–7

    Google Scholar 

  42. Keysan O, Mueller MA (2012) A linear superconducting generator for wave energy converters. In: Proceedings of 6th IET international conference on PEMD, Bristol, U.K., pp 1–6

    Google Scholar 

  43. Ohashi S, Matsuzuka T (2005) Basic characteristics of the linear synchronous generator using mechanical vibration. IEEE Trans Magn 41(10):3829–3831

    Article  ADS  Google Scholar 

  44. Wu ZH, Jin JX (2014) Characteristic analysis of HTS linear synchronous generators designed with HTS bulks and tapes. IEEE Trans Appl Supercond 24(5). Article no. 5202805

    Google Scholar 

  45. Kostopoulos D, Polinder H, van den Brink A (2012) High temperature superconducting generators for direct drive wind turbines: a review. In: Proceedings of European wind energy association conference, pp 1–10

    Google Scholar 

  46. Qu R, Liu Y, Wang J (2013) Review of superconducting generator topologies for direct-drive wind turbines. IEEE Trans Appl Supercond 23(3). Article ID 5201108

    Google Scholar 

  47. Fukui S, Ogawa J, Sato T, Tsukamoto O, Kashima N, Nagaya S (2011) Study of 10 MW-class wind turbine synchronous generators with HTS field windings. IEEE Trans Appl Supercond 21(3):1151–1154

    Article  ADS  Google Scholar 

  48. Abrahamsen AB et al (2009) Design study of 10 kW superconducting generator for wind turbine application. IEEE Trans Appl Supercond 19(3):1678–1682

    Article  ADS  Google Scholar 

  49. Ohsaki H, Sekino M, Suzuki T, Terao Y (2009) Design study of wind turbine generators using superconducting coils and bulks. In: Proceedings of international conference on clean electrical power, Capri, Italy, pp 479–484

    Google Scholar 

  50. Jensen BB, Mijatovic N, Abrahamsen AB (2013) Development of superconducting wind turbine generators. J Renew Sustain Energy 5(2). Article ID 023137

    Article  Google Scholar 

  51. Fair R (2012) Superconductivity for large scale wind turbines, GE Global Res, Niskayuna, NY, USA, Technical report DE-EE0005143

    Google Scholar 

  52. Jin JX, Zheng LH, Guo YG, Zhu JG, Grantham C, Sorrell CC, Xu W (2012) High-temperature superconducting linear synchronous motors integrated with HTS magnetic levitation components. IEEE Trans Appl Supercond 22(5). Article no. 5202617

    Google Scholar 

  53. Muramatsu R, Sadakata S, Tsuda M, Ishiyama A (2001) Trial production and experiments of linear actuator with HTS bulk secondary. IEEE Trans Appl Supercond 11(1):1976–1979

    Article  ADS  Google Scholar 

  54. Yoshida K, Matsumoto H, Eguchi M (2005) Optimal design of thrust force in vertical-type HTS bulk LRM. Physica C Supercond 426–431(1):839–847

    Article  ADS  Google Scholar 

  55. Stumberger G, Aydemir MT, Thomas AL (2004) Design of a linear bulk superconductor magnet synchronous motor for electromagnetic aircraft launch systems. IEEE Trans Appl Supercond 14(1):54–62

    Article  ADS  Google Scholar 

  56. Jin JX, Zheng LH, Guo YG, Xu W, Zhu JG (2011) Analysis and experimental validation of an HTS linear synchronous propulsion prototype with HTS magnetic suspension. Physica C Supercond 471(17/18):520–527

    Article  ADS  Google Scholar 

  57. Jin JX, Zheng LH (2011) Driving models of high temperature superconducting linear synchronous motors and characteristic analysis. Supercond Sci Technol 24(5):055011-1–055011-9

    Article  ADS  MathSciNet  Google Scholar 

  58. Jin JX, Zheng LH, Xu W, Guo YG, Zhu JG (2011) Thrust characteristics of a double-sided high temperature superconducting linear synchronous motor with a high temperature superconducting magnetic suspension system. J Appl Phys 109(7):073916-1–073916-4

    ADS  Google Scholar 

  59. Takahashi A, Ueda H, Ishiyama A (2003) Trial production and experiment of linear synchronous actuator with field-cooled HTS bulk secondary. IEEE Trans Appl Supercond 13(2):2251–2254

    Article  ADS  Google Scholar 

  60. Sato A, Ueda H, Ishiyama A (2005) Operational characteristics of linear synchronous actuator with field-cooled HTS bulk secondary. IEEE Trans Appl Supercond 15(2):2234–2237

    Article  ADS  Google Scholar 

  61. Kusada S, Igarashi M, Nemoto K, Okutomi T, Hirano S, Kuwano K, Tominaga T, Terai M, Kuriyama T, Tasaki K, Tosaka T, Marukawa K, Hanai S, Yamashita T, Yanase Y, Nakao H, Yamaji M (2007) The project overview of the HTS magnet for superconducting maglev. IEEE Trans Appl Supercond 17(2):2111–2116

    Article  ADS  Google Scholar 

  62. Kuwano K, Igarashi M, Kusada S, Nemoto K, Okutomi T, Hirano S, Tominaga T, Terai M, Kuriyama T, Tasaki K, Tosaka T, Marukawa K, Hanai S, Yamashita T, Yanase Y, Nakao H, Yamaji M (2007) The running tests of the superconducting maglev using the HTS magnet. IEEE Trans Appl Supercond 17(2):2125–2128

    Article  ADS  Google Scholar 

  63. Tasaki K, Marukawa K, Hanai S, Tosaka T, Kuriyama T, Yamashita T, Yanase Y, Yamaji M, Nakao H, Igarashi M, Kusada S, Nemoto K, Hirano S, Kuwano K, Okutomi T, Terai M (2006) HTS magnet for maglev applications (1)—Coil characteristics. IEEE Trans Appl Supercond 16(2):1100–1103

    Article  ADS  Google Scholar 

  64. Terai M, Igarashi M, Kusada S, Nemoto K, Kuriyama T, Hanai S, Yamashita T, Nakao H (2006) The R&D project of HTS magnets for the superconducting maglev. IEEE Trans Appl Supercond 16(2):1124–1129

    Article  ADS  Google Scholar 

  65. Kim WS, Jung SY, Choi HY, Jung HK, Kim JH, Hahn SY (2002) Development of a superconducting linear synchronous motor. IEEE Trans Appl Supercond 12(1):842–845

    Article  ADS  Google Scholar 

  66. Oswald B, Best KJ, Maier T, Soell M, Freyhardt HC (2004) Conceptual design of a SC HTS linear motor. Supercond Sci Technol 17(5):S445–S449

    Article  Google Scholar 

  67. Kikuma T, Ishiyama A (2011) Improvement of superconducting cylindrical linear induction motor. IEEE Trans Appl Supercond 11(1):2331–2334

    Article  ADS  Google Scholar 

  68. Farrok O, Islam MR, Sheikh MRI, Guo Y, Zhu J, Xu W (2016) A novel superconducting magnet excited linear generator for wave energy conversion system. IEEE Trans Appl Supercond 26(7). Article no. 5207105

    Article  Google Scholar 

  69. Ba LJ, Jin JX, Wu ZH, Zheng LH (2016) Conceptual design of an HTS wave linear generator. IEEE Trans Appl Supercond 26(7). Article no. 5207906

    Article  Google Scholar 

  70. Jing HL, Maki N, Ida T, Izumi M (2018) Electromechanical design of a MW class wave energy converter with a HTS tubular linear generator. IEEE Trans Appl Supercond 28(4). Article no. 4902504

    Article  Google Scholar 

  71. Huang L, Liu J, Yu H, Qu R, Chen H, Fang H (2015) Winding configuration and performance investigations of a tubular superconducting flux-switching linear generator. IEEE Trans Appl Supercond 25(3). Article no. 5202505

    Google Scholar 

  72. Molla S, Farrok O, Islam MR, Muttaqi KM (2019) Analysis and design of a high performance linear generator with high grade magnetic cores and high temperature superconducting coils for oceanic wave energy conversion. IEEE Trans Appl Supercond 29(2). Article no. 5201105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Farrok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kiran, M.R., Farrok, O., Guo, Y. (2019). Superconducting Linear Machines for Electrical Power Generation from the Oceanic Wave. In: Xu, W., Islam, M., Pucci, M. (eds) Advanced Linear Machines and Drive Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-9616-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9616-8_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9615-1

  • Online ISBN: 978-981-13-9616-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics