Skip to main content

Advanced Modelling and Performance Analysis of Permanent Magnet Linear Generators

  • Chapter
  • First Online:
Advanced Linear Machines and Drive Systems

Abstract

Apart from the wind and the solar energy, the ocean energy is a promising and predictable alternative source of energy. This green energy from the ocean is inexhaustible and in the past few decades, extensive research has been carried out to convert the ocean energy into electric energy. The possibility of using the direct drive linear generators (LG) provide an opportunity to harness the clean electric energy from the oceanic waves, without the need for intermediate mechanical conversions. In this chapter, advanced modelling approaches for designing permanent magnet linear generators (PMLGs) are discussed and a four-sided rectangular permanent magnet LG (4SRPMLG) is proposed to increase the output power. As the cost of most of the permanent magnet (PM) machines primarily depends upon the cost of the PMs, the paper shows that with the same amount of PM material, the power output of the 4SRPMLG can be greatly increased when compared with that from the conventional 2SRPMLG. Thus, the 4SRPMLG can produce more power with a slight increase in cost. Initially, the paper presents the analysis of a conventional 2SRPMLG using the optimized design parameters obtained from the Ansoft/Maxwell simulation software and the results are compared with those from the existing literature. Then, a 4SRPMLG, with the same size and the same material of the translator of the 2SRPMLG, is designed. The simulation results show that additional power can be obtained with only the additional cost of the added copper and iron in the stator. A three-dimensional transient analysis is performed instead of the traditional two-dimensional analysis to provide a higher degree of confidence in the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fusco F, Nolan G, Ringwood JV (2009) Variability reduction through optimal combination of wind/wave resources - an Irish case study. Energy 35:314–325

    Article  Google Scholar 

  2. Fernandez Chozas J, Sørensen HC, Kofoed JP (2013) Predictability and variability of wave and wind : wave and wind forecasting and diversified energy systems in the Danish North Sea, p 196

    Google Scholar 

  3. Khan N, Kalair A, Abas N, Haider A (2017) Review of ocean tidal, wave and thermal energy technologies. Renew Sustain Energy Rev 72:590–604

    Article  Google Scholar 

  4. Gunn K, Stock-Williams C (2012) Quantifying the global wave power resource. Renew Energy 44:296–304

    Article  Google Scholar 

  5. REN21 (2018) Renewables Global Status Report

    Google Scholar 

  6. Mueller M, Wallace R (2008) Enabling science and technology for marine renewable energy. Energy Policy 36:4376–4382

    Article  Google Scholar 

  7. Zheng P, Tong C, Bai J, Yu B, Sui Y, Shi W (2012) Electromagnetic design and control strategy of an axially magnetized permanent-magnet linear alternator for free-piston stirling engines. IEEE Trans Ind Appl 48:2230–2239

    Article  ADS  Google Scholar 

  8. Dang TT, Ruellan M, Prévond L, Ben Ahmed H, Multon B (2015) Sizing optimization of tubular linear induction generator and its possible application in high acceleration free-piston stirling microcogeneration. IEEE Trans Ind Appl 51:3716–3733

    Article  Google Scholar 

  9. Oh YJ, Park JS, Hyon BJ, Lee J (2018) Novel control strategy of wave energy converter using linear permanent magnet synchronous generator. IEEE Trans Appl Supercond 28:1–5

    Google Scholar 

  10. Park JS, Gu BG, Kim JR, Cho IH, Jeong I, Lee J (2017) Active phase control for maximum power point tracking of a linear wave generator. IEEE Trans Power Electron 32:7651–7662

    Article  ADS  Google Scholar 

  11. Musolino A, Raugi M, Rizzo R, Sani L (2018) A semi-analytical model for the analysis of a permanent magnet tubular linear generator. IEEE Trans Ind Appl 54:204–212

    Article  Google Scholar 

  12. Farrok O, Islam MR, Guo Y, Zhu J, Xu W (2018) A novel design procedure for designing linear generators. IEEE Trans Ind Electron 65:1846–1854

    Article  Google Scholar 

  13. Xia T, Yu H, Chen Z, Huang L, Liu X, Hu M (2017) Design and analysis of a field-modulated tubular linear permanent magnet generator for direct-drive wave energy conversion. IEEE Trans Magn 53:1–4

    Article  Google Scholar 

  14. Wang D, Shao C, Wang X (2016) Design and performance evaluation of a tubular linear switched reluctance generator with low cost and high thrust density. IEEE Trans Appl Supercond 26:1–5

    Google Scholar 

  15. Wahyudie A, Susilo TB, Jehangir SS (2018) Design of a 100 W mini permanent magnet linear generator for wave energy converter system. In: 5th International conference on renewable energy: generation and applications ICREGA 2018, 2018–Janua:223–226

    Google Scholar 

  16. Trapanese M, Boscaino V, Cipriani G, Curto D, Di Dio V, Franzitta V (2019) A permanent magnet linear generator for the enhancement of the reliability of a wave energy conversion system. IEEE Trans Ind Electron 66:4934–4944

    Article  Google Scholar 

  17. Selçuk AH, Kürüm H (2008) Investigation of end effects in linear induction motors by using the finite-element method. IEEE Trans Magn 44:1791–1795

    Article  ADS  Google Scholar 

  18. Wahyudie A, Jama M, Susilo TB, Mon BF, Shaaref H, Noura H (2017) Design and testing of a laboratory scale test rig for wave energy converters using a double-sided permanent magnet linear generator. IET Renew Power Gener 11:922–930

    Article  Google Scholar 

  19. Huang L, Hu M, Liu J, Yu H, Zeng C, Chen Z (2017) Electromagnetic design of a 10-kW-class flux-switching linear superconducting hybrid excitation generator for wave energy conversion. IEEE Trans Appl Supercond 27:1–6

    Google Scholar 

  20. Liu C, Yu H, Liu Q, Zhong W, Zhu H (2017) Research on a double float system for direct drive wave power conversion. IET Renew Power Gener 11:1026–1032

    Article  Google Scholar 

  21. Vermaak R, Kamper MJ (2012) Experimental evaluation and predictive control of an air-cored linear generator for direct-drive wave energy converters. IEEE Trans Ind Appl 48:1817–1826

    Article  Google Scholar 

  22. Rao KSR, Sunderan T, Adiris MR (2017) Performance and design optimization of two model based wave energy permanent magnet linear generators. Renew Energy 101:196–203

    Article  Google Scholar 

  23. Rhinefrank K, Schacher A, Prudell J et al (2012) Comparison of direct-drive power takeoff systems for ocean wave energy applications. IEEE J Ocean Eng 37:35–44

    Article  Google Scholar 

  24. Faiz J, Nematsaberi A (2017) Linear electrical generator topologies for direct-drive marine wave energy conversion - an overview. IET Renew Power Gener 11:1163–1176

    Article  Google Scholar 

  25. Farrok O, Islam MR, Sheikh MRI, Guo Y, Zhu J, Lei G (2018) Oceanic wave energy conversion by a novel permanent magnet linear generator capable of preventing demagnetization. IEEE Trans Ind Appl 54:6005–6014

    Article  Google Scholar 

  26. Pan JF, Li Q, Wu X, Cheung N, Qiu L (2019) Complementary power generation of double linear switched reluctance generators for wave power exploitation. Int J Electr Power Energy Syst 106:33–44

    Article  Google Scholar 

  27. Xia T, Yu H, Guo R, Liu X (2018) Research on the field-modulated tubular linear generator with quasi-halbach magnetization for ocean wave energy conversion. IEEE Trans Appl Supercond 28:1–5

    Google Scholar 

  28. Vermaak R (2013) Development of a novel air-cored permanent magnet linear generator for direct drive ocean wave energy converters. Doctoral dissertation, Stellenbosch University, Stellenbosch

    Google Scholar 

  29. Wang D, Shao C, Wang X, Zhang C (2016) Performance characteristics and preliminary analysis of low cost tubular linear switch reluctance generator for direct drive WEC. IEEE Trans Appl Supercond 26:1–5

    Google Scholar 

  30. Prudell J, Stoddard M, Amon E, Brekken TKA, Von Jouanne A (2010) A permanent-magnet tubular linear generator for ocean wave energy conversion. IEEE Trans Ind Appl 46:2392–2400

    Article  Google Scholar 

  31. Li W, Ching TW, Chau KT (2017) A new linear vernier permanent-magnet machine using high-temperature superconducting DC field excitation. IEEE Trans Appl Supercond 27:1–5

    Google Scholar 

  32. Liu C, Yu H, Hu M, Liu Q, Zhou S (2013) Detent force reduction in permanent magnet tubular linear generator for direct-driver wave energy conversion. IEEE Trans Magn 49:1913–1916

    Article  ADS  Google Scholar 

  33. Kim C-W, Ahn J-H, Choi J-Y, Kim J-M, Koo M-M, Hong K (2018) Core loss analysis of permanent magnet synchronous generator with slotless stator. IEEE Trans Appl Supercond 28:1–4

    Google Scholar 

  34. Kim C-W, Kim J-M, Seo S-W, Ahn J-H, Hong K, Choi J-Y (2018) Core loss analysis of permanent magnet linear synchronous generator considering the 3-D flux path. IEEE Trans Magn 54:1–4

    Article  Google Scholar 

  35. Gargov NP, Zobaa AF (2012) Multi-phase air-cored tubular permanent magnet linear generator for wave energy converters. IET Renew Power Gener 6:171

    Article  Google Scholar 

  36. Subiabre EJPE, Mueller MA, Bertényi T, Young T (2012) Realistic loss modelling and minimisation in an air-cored permanent magnet generator for wind energy applications. In: 6th IET international conference on power electronics, machines and drives (PEMD 2012), Bristol, UK. IET, p D22

    Google Scholar 

  37. Schutte J, Joubert LH, Strauss JM (2012) Constrained optimisation of a transverse flux PM linear generator. In: Proceedings - 2012 20th international conference on electrical machines, ICEM 2012, pp 595–599

    Google Scholar 

  38. Jordan S, Baker NJ (2017) Comparison of two transverse flux machines for an aerospace application. IEEE Int Electr Mach Drives Conf 2017:1–6

    Google Scholar 

  39. Zhang S, Zheng P, Yu B, Cheng L, Wang M (2018) Thermal analysis and experimental verification of a staggered-teeth transverse-flux permanent-magnet linear machine. IET Electr Power Appl 12:1048–1057

    Article  Google Scholar 

  40. Wang J, Baker N, Gavrilov B (2019) Study of the assembly, build and test of a linear transverse flux machine. J Eng 2019:4293–4297

    Google Scholar 

  41. Wang J, Baker NJ (2018) A linear laminated cylindrical transverse flux machine for use with a free piston engine. IEEE Trans Energy Convers 33:1988–1997

    Article  ADS  Google Scholar 

  42. Polinder H, Mecrow BC, Jack AG, Dickinson PG, Mueller MA (2005) Conventional and TFPM linear generators for direct-drive wave energy conversion. IEEE Trans Energy Convers 20:260–267

    Article  ADS  Google Scholar 

  43. Baker NJ, Sa Jalal A, Wang J, Korbekandi RM (2019) Experimental comparison of two linear machines developed for the free piston engine. J Eng 2019:4406–441

    Google Scholar 

  44. Washington JG, Atkinson GJ, Baker NJ (2016) Reduction of cogging torque and EMF harmonics in modulated pole machines. IEEE Trans Energy Convers 31:759–768

    Article  ADS  Google Scholar 

  45. Farrok O, Islam MR, Sheikh MRI, Guo Y, Zhu JG (2018) A split translator secondary stator permanent magnet linear generator for oceanic wave energy conversion. IEEE Trans Ind Electron 65:7600–7608

    Article  Google Scholar 

  46. Farrok O, Islam MR, Islam Sheikh MR, Guo Y, Zhu J, Xu W (2016) A novel superconducting magnet excited linear generator for wave energy conversion system. IEEE Trans Appl Supercond 26:1–5

    Article  Google Scholar 

  47. Farrok O, Islam MR, Sheikh MRI, Guo YG, Zhu JG (2017) Design and analysis of a novel lightweight translator permanent magnet linear generator for oceanic wave energy conversion. IEEE Trans Magn 53:1–4

    Article  Google Scholar 

  48. Bashir S, Farrok O, Islam R, Zhu J (2018) N28EH permanent magnet based linear generator to prevent demagnetization during oceanic wave energy conversion. In: 2018 21st international conference on electrical machines and systems (ICEMS), Jeju, Korea. IEEE, pp 1836–1841

    Google Scholar 

  49. Di Dio V, Miceli R, Trapanese M (2007) The use of sea waves for generation of electrical energy: a linear tubular asynchronous electrical generator. In: Oceans 2007, Vancouver, BC, Canada. IEEE, pp 1–4

    Google Scholar 

  50. Baker NJ, Raihan MAH, Almoraya AA (2019) A cylindrical linear permanent magnet vernier hybrid machine for wave energy. IEEE Trans Energy Convers 34:691–700

    Article  ADS  Google Scholar 

  51. Huang L, Hu M, Yu H, Liu C, Chen Z (2017) Design and experiment of a direct-drive wave energy converter using outer-PM linear tubular generator. IET Renew Power Gener 11:353–360

    Article  Google Scholar 

  52. Farrok O, Islam MR, Sheikh MRI (2016) Analysis of the oceanic wave dynamics for generation of electrical energy using a linear generator. J Energy 2016:1–14

    Article  Google Scholar 

  53. Seo S-W, Jang G-H, Kim J-M, Choi J-Y (2018) Characteristic analysis and experimental verification for a double-sided permanent magnet linear synchronous generator according to magnetization array. IEEE Trans Appl Supercond 28:1–4

    Google Scholar 

  54. Oprea CA, Martis CS, Jurca FN, Fodorean D, Szabó L (2011) Permanent magnet linear generator for renewable energy applications: Tubular vs. four-sided structures. In: 3rd International conference on clean electrical power renew energy resource impact, ICCEP 2011, pp 588–592

    Google Scholar 

  55. Huang L, Zhou S, Liu Q, Liu C, Hu M, Yu H (2014) Research on a permanent magnet tubular linear generator for direct drive wave energy conversion. IET Renew Power Gener 8:281–288

    Article  Google Scholar 

  56. Ivanova IA, Ågren O, Bernhoff H, Leijon M (2005) Simulation of wave-energy converter with octagonal linear generator. IEEE J Ocean Eng 30:619–629

    Article  Google Scholar 

  57. Wijono Arof H, Ping HW (2010) Analysis of magnetic field distribution of a cylindrical discrete Halbach permanent magnet linear generator. IET Electr Power Appl 4:629

    Article  Google Scholar 

  58. Kottayil SK, Krishna R, Leijon M, Rahm M, Waters R, Svensson O (2013) Analysis of linear wave power generator model with real sea experimental results. IET Renew Power Gener 7:574–581

    Article  Google Scholar 

  59. Castellucci V, Eriksson M, Boström C, Waters R, Hong Y (2016) Linear generator-based wave energy converter model with experimental verification and three loading strategies. IET Renew Power Gener 10:349–359

    Article  Google Scholar 

  60. Farrok O, Islam MR, Sheikh MRI, Guo Y, Zhu J, Lei G (2017) A novel method to avoid degradation due to demagnetization of PM linear generators for oceanic wave energy extraction. In: 20th international conference on electrical machines systems, ICEMS 2017, Sydney, NSW, Australia. IEEE, pp 1–6

    Google Scholar 

  61. Thomas G (2008) The Theory Behind the Conversion of Ocean Wave Energy: a Review. In: Cruz J (ed) Ocean wave energy current status future prespectives. Springer, Heidelberg, pp 41–91

    Chapter  Google Scholar 

  62. Wu F, Zhang XP, Ju P, Sterling MJH (2008) Modeling and control of AWS-based wave energy conversion system integrated into power grid. IEEE Trans Power Syst 23:1196–1204

    Article  ADS  Google Scholar 

  63. Zhou P, Fu WN, Lin D, Stanton S, Cendes ZJ (2004) Numerical modeling of magnetic devices. IEEE Trans Magn 40:1803–1809

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safdar Rasool .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rasool, S., Islam, M.R., Muttaqi, K.M., Sutanto, D. (2019). Advanced Modelling and Performance Analysis of Permanent Magnet Linear Generators. In: Xu, W., Islam, M., Pucci, M. (eds) Advanced Linear Machines and Drive Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-9616-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9616-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9615-1

  • Online ISBN: 978-981-13-9616-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics