Skip to main content

Fuel Cell in Community Energy System

  • Chapter
  • First Online:
Guidelines for Community Energy Planning
  • 323 Accesses

Abstract

In contrast with the traditional, centralized electricity grid (macrogrid), the microgrid is a modern, localized, small-scale energy grid with a group of interconnected loads and distributed energy resources incorporating the storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eurelectric, 10 Steps to Smart Grids (2011)

    Google Scholar 

  2. U.S. Environmental Protection Agency, Catalog of CHP Technologies, March 2015

    Google Scholar 

  3. A.B. Scaramelli, Fuel Cells in Commercial Office Buildings—Why and How It Makes Sense (Beacon Capital Partners, LLC, 2012)

    Google Scholar 

  4. Fuel Cell Energy Solution. http://www.fuelcellenergy.com/

  5. S. Renz, Overview of Large Fuel Cell Applications World Wide, IEA Advanced Fuel Cell Annex 33, 21/22/04/2015

    Google Scholar 

  6. Bloom Energy. http://www.bloomenergy.com/

  7. Fuel Cell Energy. http://www.fuelcellenergy.com/

  8. U.S. Department of Energy, Fuel Cell Technologies Program, 1-877-EERE-INFO (2010)

    Google Scholar 

  9. POSCO Energy. http://eng.poscoenergy.com/

  10. U.S. Department of Energy, The Business Case for Fuel Cells (2014)

    Google Scholar 

  11. W.Y. Yang, Y.R. Zhao, V. Liso, N. Brandon, Optimal design and operation of a syngas-fueled SOFC micro-CHP system for residential applications in different climate zones in China. Energy Build. 80, 613–622 (2014)

    Article  Google Scholar 

  12. H.B. Ren, W.J. Gao, Economic and environmental evaluation of micro CHP systems with different operating modes for residential buildings in Japan. Energy Build. 42, 853–861 (2010)

    Article  Google Scholar 

  13. G. Mavromatidis, S. Acha, N. Shah, Diagnostic tools of energy performance for supermarkets using Artificial Neural Network algorithms. Energy Build. 62, 304–314 (2013)

    Google Scholar 

  14. S. Acha, Y.J. Du, N. Shah, Enhancing energy efficiency in supermarket refrigeration systems through a robust energy performance indicator. Int. J. Refrig. 64, 40–50 (2016)

    Google Scholar 

  15. M. Li, H. Mu, N. Li, B. Ma, Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system. Energy 99, 202–220 (2016)

    Google Scholar 

  16. M. Chung, C.P. Hwa, Comparison of building energy demand for hotels, hospitals, and offices in Korea. Energy 92, 383–393 (2015)

    Google Scholar 

  17. Q. Shen, J.J. Xia, L.J. Liang, S. Gao, Case study of one China northern campus energy saving and carbon reduction project. Constr. Sci. Technol. 12, 39–42 (2013)

    Google Scholar 

  18. J.M. Jiang, W.J. Gao, Y.N. Gao, X.D. Wei, S. Kuroki, Performance analysis of CCHP system for University Campus in North China. Proc. Soc. Behav. Sci. 216, 361–372 (2016)

    Google Scholar 

  19. W. Lu, S.J. Zhang, Y.H. Xiao, Comparison of the application in CCHP between gas turbine and gas engine. J. Eng. Thermophys. 29(6), 905–910 (2008)

    Google Scholar 

  20. T. Funan, Application of distributed energy system in one Shanghai hospital hot water system. Water Wastewater Eng. 41, 62–65 (2015)

    Google Scholar 

  21. T.F. Ren, Z.G. Zhang, L.L. Zhang, Energy consuming audit and energy saving analysis about typical building of hospital in Tianjin. Energy Conserv. Technol. 03, 0222–0225 (2008)

    Google Scholar 

  22. S.C Hu, J.D Chen, Y.K. Chuah, Energy cost and consumption in a large acute hospital. Int. J. Architectural Sci. 5, 11–19 (2004)

    Google Scholar 

  23. R. Kilpatrick, P. Banfill, Energy consumption in non-domestic buildings: a review of schools, in World Renewable Energy Congress 2011-Sweden (2011), pp. 8–13

    Google Scholar 

  24. P.J. Mago, L.M. Chamra, J. Ramsay, Micro-combined cooling, heating and power systems hybrid electric-thermal load following operation. Appl. Therm. Eng. 30, 800–806 (2010)

    Google Scholar 

  25. R. Napoli, M. Gandiglio, A. Lanzini, M. Santarelli, Techno-economic analysis of PEMFC and SOFC micro-CHP fuel cell systems for the residential sector. Energy Build. 103, 131–146 (2015)

    Article  Google Scholar 

  26. Innovus Power Ltd. http://www.innovus-power.com/

  27. MTU Aero Engines. http://www.mtu.de/

  28. S. Renz, Overview of Large Fuel Cell Applications World Wide. IEA Advanced Fuel Cell Annex 33 (2015)

    Google Scholar 

  29. X. Li, Z.R. Li, L.F. Zhao, The preliminary calculation of CO2 emission factors of different fuel natural gas in China. Mod. Chem. Ind. 36(6), 11 (2016)

    CAS  Google Scholar 

  30. IEA, Energy Technology Essentials (2007)

    Google Scholar 

  31. I. Staffell, R. Green, The cost of domestic fuel cell micro-CHP systems. Hydrogen Energy 38, 1088–1102 (2013)

    Article  CAS  Google Scholar 

  32. O. Nishimura, AISIN SOFC—Update Information, IEA Advanced Fuel Cells Annex 33 (2016)

    Google Scholar 

  33. D.W. Wu, R.Z. Wang, Combined cooling, heating and power: a review. Prog. Energy Combust. Sci. 32(5–6), 459–495 (2006)

    Article  Google Scholar 

  34. Fuel Cell Combined Heat and Power. http://enefield.eu/

  35. Pathway to a Competitive European Fuel Cell micro-Cogeneration Market. http://www.pace-energy.eu/

  36. U.S. Energy Information Administration. http://www.eia.gov/

  37. J.-L. Fan, J. Liu, X. Zhang, Urbanization effect on regional household energy consumption in China. China Popul. Resour. Environ. 25(1), 55–60 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Yu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 China Architecture & Building Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, H., Huang, Z., Pan, Y., Long, W. (2020). Fuel Cell in Community Energy System. In: Guidelines for Community Energy Planning. Springer, Singapore. https://doi.org/10.1007/978-981-13-9600-7_12

Download citation

Publish with us

Policies and ethics