Skip to main content

Iron Pathophysiology in Friedreich’s Ataxia

  • Chapter
  • First Online:
Brain Iron Metabolism and CNS Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1173))

Abstract

Friedreich’s ataxia (FRDA) is a degenerative disease that affects both the central and the peripheral nervous systems and non-neural tissues including, mainly, heart, and endocrine pancreas. It is an autosomal recessive disease caused by a GAA triplet-repeat localized within an Alu sequence element in intron 1 of frataxin (FXN) gene, which encodes a mitochondrial protein FXN. This protein is essential for mitochondrial function by the involvement of iron–sulfur cluster biogenesis. The effects of its deficiency also include disruption of cellular, particularly mitochondrial, iron homeostasis, i.e., relatively more iron accumulated in mitochondria and less iron presented in cytosol. Though iron toxicity is commonly thought to be mediated via Fenton reaction, oxidative stress seems not to be the main problem to result in detrimental effects on cell survival, particularly neuron survival. Therefore, the basic research on FXN function is urgently demanded to understand the disease. This chapter focuses on the outcome of FXN expression, regulation, and function in cellular or animal models of FRDA and on iron pathophysiology in the affected tissues. Finally, therapeutic strategies based on the control of iron toxicity and iron cellular redistribution are considered. The combination of multiple therapeutic targets including iron, oxidative stress, mitochondrial function, and FXN regulation is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colombo R, Carobene A (2000) Age of the intronic GAA triplet repeat expansion mutation in Friedreich ataxia. Hum Genet 106:455–458

    Article  CAS  PubMed  Google Scholar 

  2. Nieto A, Hernández-Torres A, Pérez-Flores J, Montón F (2018) Depressive symptoms in Friedreich ataxia. Int J Clin Health Psychol 18:18–26

    Article  PubMed  Google Scholar 

  3. Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Canizares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, De Michele G, Filla A, De Frutos R, Palau F, Patel PI, Di Donato S, Mandel JL, Cocozza S, Koenig M, Pandolfo M (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427

    Article  CAS  PubMed  Google Scholar 

  4. Cossee M, Durr A, Schmitt M, Dahl N, Trouillas P, Allinson P, Kostrzewa M, Nivelon-Chevallier A, Gustavson KH, Kohlschutter A, Muller U, Mandel JL, Brice A, Koenig M, Cavalcanti F, Tammaro A, De Michele G, Filla A, Cocozza S, Labuda M, Montermini L, Poirier J, Pandolfo M (1999) Friedreich’s ataxia: point mutations and clinical presentation of compound heterozygotes. Ann Neurol 45:200–206

    Article  CAS  PubMed  Google Scholar 

  5. De Castro M, Garcia-Planells J, Monros E, Canizares J, Vazquez-Manrique R, Vilchez JJ, Urtasun M, Lucas M, Navarro G, Izquierdo G, Molto MD, Palau F (2000) Genotype and phenotype analysis of Friedreich’s ataxia compound heterozygous patients. Hum Genet 106:86–92

    Article  PubMed  Google Scholar 

  6. Anheim M, Mariani LL, Calvas P, Cheuret E, Zagnoli F, Odent S, Seguela C, Marelli C, Fritsch M, Delaunoy JP, Brice A, Durr A, Koenig M (2012) Exonic deletions of FXN and early-onset Friedreich ataxia. Arch Neurol 69:912–916

    Article  PubMed  Google Scholar 

  7. Barcia G, Rachid M, Magen M, Assouline Z, Koenig M, Funalot B, Barnerias C, Rotig A, Munnich A, Bonnefont JP, Steffann J (2018) Pitfalls in molecular diagnosis of Friedreich ataxia. Eur J Med Genet

    Google Scholar 

  8. Gottesfeld JM (2007) Small molecules affecting transcription in Friedreich ataxia. Pharmacol Ther 116:236–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schmucker S, Puccio H (2010) Understanding the molecular mechanisms of Friedreich’s ataxia to develop therapeutic approaches. Hum Mol Genet 19:R103–R110

    Article  CAS  PubMed  Google Scholar 

  10. Al-Mahdawi S, Pinto RM, Ismail O, Varshney D, Lymperi S, Sandi C, Trabzuni D, Pook M (2008) The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum Mol Genet 17:735–746

    Article  CAS  PubMed  Google Scholar 

  11. Castaldo I, Pinelli M, Monticelli A, Acquaviva F, Giacchetti M, Filla A, Sacchetti S, Keller S, Avvedimento VE, Chiariotti L, Cocozza S (2008) DNA methylation in intron 1 of the frataxin gene is related to GAA repeat length and age of onset in Friedreich ataxia patients. J Med Genet 45:808–812

    Article  CAS  PubMed  Google Scholar 

  12. Greene E, Mahishi L, Entezam A, Kumari D, Usdin K (2007) Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia. Nucleic Acids Res 35:3383–3390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rai M, Soragni E, Jenssen K, Burnett R, Herman D, Coppola G, Geschwind DH, Gottesfeld JM, Pandolfo M (2008) HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS ONE 3:e1958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Soragni E, Herman D, Dent SY, Gottesfeld JM, Wells RD, Napierala M (2008) Long intronic GAA*TTC repeats induce epigenetic changes and reporter gene silencing in a molecular model of Friedreich ataxia. Nucleic Acids Res 36:6056–6065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li K, Singh A, Crooks DR, Dai X, Cong Z, Pan L, Ha D, Rouault TA (2010) Expression of human frataxin is regulated by transcription factors SRF and TFAP2. PLoS ONE 5:e12286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Guccini I, Serio D, Condo I, Rufini A, Tomassini B, Mangiola A, Maira G, Anile C, Fina D, Pallone F, Mongiardi MP, Levi A, Ventura N, Testi R, Malisan F (2011) Frataxin participates to the hypoxia-induced response in tumors. Cell Death Dis 2:e123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shimizu R, Lan NN, Tai TT, Adachi Y, Kawazoe A, Mu A, Taketani S (2014) p53 directly regulates the transcription of the human frataxin gene and its lack of regulation in tumor cells decreases the utilization of mitochondrial iron. Gene 551:79–85

    Article  CAS  PubMed  Google Scholar 

  18. Condo I, Ventura N, Malisan F, Rufini A, Tomassini B, Testi R (2007) In vivo maturation of human frataxin. Hum Mol Genet 16:1534–1540

    Article  CAS  PubMed  Google Scholar 

  19. Acquaviva F, De Biase I, Nezi L, Ruggiero G, Tatangelo F, Pisano C, Monticelli A, Garbi C, Acquaviva AM, Cocozza S (2005) Extra-mitochondrial localisation of frataxin and its association with IscU1 during enterocyte-like differentiation of the human colon adenocarcinoma cell line Caco-2. J Cell Sci 118:3917–3924

    Article  CAS  PubMed  Google Scholar 

  20. Condo I, Malisan F, Guccini I, Serio D, Rufini A, Testi R (2010) Molecular control of the cytosolic aconitase/IRP1 switch by extramitochondrial frataxin. Hum Mol Genet 19:1221–1229

    Article  CAS  PubMed  Google Scholar 

  21. Guo L, Wang Q, Weng L, Hauser LA, Strawser CJ, Mesaros C, Lynch DR, Blair IA (2018) Characterization of a new N-terminally acetylated extra-mitochondrial isoform of frataxin in human erythrocytes. Sci Rep 8:17043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Xia H, Cao Y, Dai X, Marelja Z, Zhou D, Mo R, Al-Mahdawi S, Pook MA, Leimkuhler S, Rouault TA, Li K (2012) Novel frataxin isoforms may contribute to the pathological mechanism of Friedreich ataxia. PLoS ONE 7:e47847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmucker S, Martelli A, Colin F, Page A, Wattenhofer-Donze M, Reutenauer L, Puccio H (2011) Mammalian frataxin: an essential function for cellular viability through an interaction with a preformed ISCU/NFS1/ISD11 iron-sulfur assembly complex. PLoS ONE 6:e16199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Perez-Luz S, Gimenez-Cassina A, Fernandez-Frias I, Wade-Martins R, Diaz-Nido J (2015) Delivery of the 135 kb human frataxin genomic DNA locus gives rise to different frataxin isoforms. Genomics 106:176–182

    Article  CAS  Google Scholar 

  25. Gakh O, Bedekovics T, Duncan SF, Smith DY, Berkholz DS, Isaya G (2010) Normal and Friedreich ataxia cells express different isoforms of frataxin with complementary roles in iron-sulfur cluster assembly. J Biol Chem 285:38486–38501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Musco G, Stier G, Kolmerer B, Adinolfi S, Martin S, Frenkiel T, Gibson T, Pastore A (2000) Towards a structural understanding of Friedreich’s ataxia: the solution structure of frataxin. Structure 8:695–707

    Article  CAS  PubMed  Google Scholar 

  27. Dhe-Paganon S, Shigeta R, Chi YI, Ristow M, Shoelson SE (2000) Crystal structure of human frataxin. J Biol Chem 275:30753–30756

    Article  CAS  PubMed  Google Scholar 

  28. Rotig A, de Lonlay P, Chretien D, Foury F, Koenig M, Sidi D, Munnich A, Rustin P (1997) Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat Genet 17:215–217

    Article  CAS  PubMed  Google Scholar 

  29. Stehling O, Lill R (2013) The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, and diseases. Cold Spring Harb Perspect Biol 5:a011312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gerber J, Muhlenhoff U, Lill R (2003) An interaction between frataxin and Isu1/Nfs1 that is crucial for Fe/S cluster synthesis on Isu1. EMBO Rep 4:906–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Layer G, Ollagnier-de Choudens S, Sanakis Y, Fontecave M (2006) Iron-sulfur cluster biosynthesis: characterization of Escherichia coli CYaY as an iron donor for the assembly of [2Fe–2S] clusters in the scaffold IscU. J Biol Chem 281:16256–16263

    Article  CAS  PubMed  Google Scholar 

  32. Shan Y, Napoli E, Cortopassi G (2007) Mitochondrial frataxin interacts with ISD11 of the NFS1/ISCU complex and multiple mitochondrial chaperones. Hum Mol Genet 16:929–941

    Article  CAS  PubMed  Google Scholar 

  33. Li H, Gakh O, Smith DY, Isaya G (2009) Oligomeric yeast frataxin drives assembly of core machinery for mitochondrial iron-sulfur cluster synthesis. J Biol Chem 284:21971–21980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alsina D, Purroy R, Ros J, Tamarit J (2018) Iron in Friedreich Ataxia: a central role in the pathophysiology or an epiphenomenon? Pharmaceuticals (Basel) 11

    Google Scholar 

  35. Gakh O, Ranatunga W, Smith DY, Ahlgren EC, Al-Karadaghi S, Thompson JR, Isaya G (2016) Architecture of the human mitochondrial iron-sulfur cluster assembly machinery. J Biol Chem 291:21296–21321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Armas AM, Balparda M, Terenzi A, Busi MV, Pagani MA, Gomez-Casati DF (2019) Ferrochelatase activity of plant frataxin. Biochimie 156:118–122

    Article  CAS  PubMed  Google Scholar 

  37. Cook JD, Bencze KZ, Jankovic AD, Crater AK, Busch CN, Bradley PB, Stemmler AJ, Spaller MR, Stemmler TL (2006) Monomeric yeast frataxin is an iron-binding protein. Biochemistry 45:7767–7777

    Article  CAS  PubMed  Google Scholar 

  38. Yoon T, Cowan JA (2003) Iron-sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe–2S] clusters in ISU-type proteins. J Am Chem Soc 125:6078–6084

    Article  CAS  PubMed  Google Scholar 

  39. Bencze KZ, Yoon T, Millan-Pacheco C, Bradley PB, Pastor N, Cowan JA, Stemmler TL (2007) Human frataxin: iron and ferrochelatase binding surface. Chem Commun (Camb) 1798–1800

    Google Scholar 

  40. Yoon T, Cowan JA (2004) Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis. J Biol Chem 279:25943–25946

    Article  CAS  PubMed  Google Scholar 

  41. Steinkellner H, Singh HN, Muckenthaler MU, Goldenberg H, Moganty RR, Scheiber-Mojdehkar B, Sturm B (2017) No changes in heme synthesis in human Friedreich s ataxia erythroid progenitor cells. Gene 621:5–11

    Article  CAS  PubMed  Google Scholar 

  42. Adamec J, Rusnak F, Owen WG, Naylor S, Benson LM, Gacy AM, Isaya G (2000) Iron-dependent self-assembly of recombinant yeast frataxin: implications for Friedreich ataxia. Am J Hum Genet 67:549–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ahlgren EC, Fekry M, Wiemann M, Soderberg CA, Bernfur K, Gakh O, Rasmussen M, Hojrup P, Emanuelsson C, Isaya G, Al-Karadaghi S (2017) Iron-induced oligomerization of human FXN81-210 and bacterial CyaY frataxin and the effect of iron chelators. PLoS ONE 12:e0188937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Schagerlof U, Elmlund H, Gakh O, Nordlund G, Hebert H, Lindahl M, Isaya G, Al-Karadaghi S (2008) Structural basis of the iron storage function of frataxin from single-particle reconstruction of the iron-loaded oligomer. Biochemistry 47:4948–4954

    Article  PubMed  CAS  Google Scholar 

  45. Park S, Gakh O, Mooney SM, Isaya G (2002) The ferroxidase activity of yeast frataxin. J Biol Chem 277:38589–38595

    Article  CAS  PubMed  Google Scholar 

  46. Soderberg CA, Rajan S, Shkumatov AV, Gakh O, Schaefer S, Ahlgren EC, Svergun DI, Isaya G, Al-Karadaghi S (2013) The molecular basis of iron-induced oligomerization of frataxin and the role of the ferroxidation reaction in oligomerization. J Biol Chem 288:8156–8167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Sutak R, Seguin A, Garcia-Serres R, Oddou JL, Dancis A, Tachezy J, Latour JM, Camadro JM, Lesuisse E (2012) Human mitochondrial ferritin improves respiratory function in yeast mutants deficient in iron-sulfur cluster biogenesis, but is not a functional homologue of yeast frataxin. Microbiologyopen 1:95–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vaubel RA, Isaya G (2013) Iron-sulfur cluster synthesis, iron homeostasis and oxidative stress in Friedreich ataxia. Mol Cell Neurosci 55:50–61

    Article  CAS  PubMed  Google Scholar 

  49. Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, Gwynn B, Lambert AJ, Wingert RA, Traver D, Trede NS, Barut BA, Zhou Y, Minet E, Donovan A, Brownlie A, Balzan R, Weiss MJ, Peters LL, Kaplan J, Zon LI, Paw BH (2006) Mitoferrin is essential for erythroid iron assimilation. Nature 440:96–100

    Article  CAS  PubMed  Google Scholar 

  50. Tsai CL, Barondeau DP (2010) Human frataxin is an allosteric switch that activates the Fe–S cluster biosynthetic complex. Biochemistry 49:9132–9139

    Article  CAS  PubMed  Google Scholar 

  51. Colin F, Martelli A, Clemancey M, Latour JM, Gambarelli S, Zeppieri L, Birck C, Page A, Puccio H, Ollagnier de Choudens S (2015) Mammalian frataxin controls sulfur production and iron entry during de novo Fe4S4 cluster assembly. J Am Chem Soc 135:733–740

    Article  CAS  PubMed  Google Scholar 

  52. Bridwell-Rabb J, Fox NG, Tsai CL, Winn AM, Barondeau DP (2014) Human frataxin activates Fe–S cluster biosynthesis by facilitating sulfur transfer chemistry. Biochemistry 53:4904–4913

    Article  CAS  PubMed  Google Scholar 

  53. Foury F, Cazzalini O (1997) Deletion of the yeast homologue of the human gene associated with Friedreich’s ataxia elicits iron accumulation in mitochondria. FEBS Lett 411:373–377

    Article  CAS  PubMed  Google Scholar 

  54. Llorens JV, Soriano S, Calap-Quintana P, Gonzalez-Cabo P, Molto MD (2019) The role of Iron in Friedreich’s ataxia: insights from studies in human tissues and cellular and animal models. Front Neurosci 13:75

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cossee M, Puccio H, Gansmuller A, Koutnikova H, Dierich A, LeMeur M, Fischbeck K, Dolle P, Koenig M (2000) Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum Mol Genet 9:1219–1226

    Article  CAS  PubMed  Google Scholar 

  56. Babcock M, de Silva D, Oaks R, Davis-Kaplan S, Jiralerspong S, Montermini L, Pandolfo M, Kaplan J (1997) Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276:1709–1712

    Article  CAS  PubMed  Google Scholar 

  57. Canizares J, Blanca JM, Navarro JA, Monros E, Palau F, Molto MD (2000) dfh is a Drosophila homolog of the Friedreich’s ataxia disease gene. Gene 256:35–42

    Article  CAS  PubMed  Google Scholar 

  58. Llorens JV, Navarro JA, Martinez-Sebastian MJ, Baylies MK, Schneuwly S, Botella JA, Molto MD (2007) Causative role of oxidative stress in a Drosophila model of Friedreich ataxia. FASEB J. 21:333–344

    Article  CAS  PubMed  Google Scholar 

  59. Anderson PR, Kirby K, Orr WC, Hilliker AJ, Phillips JP (2008) Hydrogen peroxide scavenging rescues frataxin deficiency in a Drosophila model of Friedreich’s ataxia. Proc Natl Acad Sci U S A 105:611–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Calap-Quintana P, Navarro JA, Gonzalez-Fernandez J, Martinez-Sebastian MJ, Molto MD, Llorens JV (2018) Drosophila melanogaster Models of Friedreich’s Ataxia. Biomed Res Int 2018:5065190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vazquez-Manrique RP, Gonzalez-Cabo P, Ortiz-Martin I, Ros S, Baylis HA, Palau F (2007) The frataxin-encoding operon of Caenorhabditis elegans shows complex structure and regulation. Genomics 89:392–401

    Article  CAS  PubMed  Google Scholar 

  62. Vazquez-Manrique RP, Gonzalez-Cabo P, Ros S, Aziz H, Baylis HA, Palau F (2006) Reduction of caenorhabditis elegans frataxin increases sensitivity to oxidative stress, reduces lifespan, and causes lethality in a mitochondrial complex II mutant. FASEB J. 20:172–174

    Article  CAS  PubMed  Google Scholar 

  63. Gonzalez-Cabo P, Ros S, Palau F (2010) Flavin adenine dinucleotide rescues the phenotype of frataxin deficiency. PLoS ONE 5:e8872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Ventura N, Rea S, Henderson ST, Condo I, Johnson TE, Testi R (2005) Reduced expression of frataxin extends the lifespan of Caenorhabditis elegans. Aging Cell 4:109–112

    Article  CAS  PubMed  Google Scholar 

  65. Schiavi A, Torgovnick A, Kell A, Megalou E, Castelein N, Guccini I, Marzocchella L, Gelino S, Hansen M, Malisan F, Condo I, Bei R, Rea SL, Braeckman BP, Tavernarakis N, Testi R, Ventura N (2013) Autophagy induction extends lifespan and reduces lipid content in response to Frataxin silencing in C. elegans. Exp Gerontol 48:191–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schiavi A, Maglioni S, Palikaras K, Shaik A, Strappazzon F, Brinkmann V, Torgovnick A, Castelein N, De Henau S, Braeckman BP, Cecconi F, Tavernarakis N, Ventura N (2015) Iron-starvation-induced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans. Curr Biol 25:1810–1822

    Article  CAS  PubMed  Google Scholar 

  67. Puccio H, Simon D, Cossee M, Criqui-Filipe P, Tiziano F, Melki J, Hindelang C, Matyas R, Rustin P, Koenig M (2001) Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe–S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet 27:181–186

    Article  CAS  PubMed  Google Scholar 

  68. Miranda CJ, Santos MM, Ohshima K, Smith J, Li L, Bunting M, Cossee M, Koenig M, Sequeiros J, Kaplan J, Pandolfo M (2002) Frataxin knockin mouse. FEBS Lett 512:291–297

    Article  CAS  PubMed  Google Scholar 

  69. Anjomani Virmouni S, Ezzatizadeh V, Sandi C, Sandi M, Al-Mahdawi S, Chutake Y, Pook MA (2015) A novel GAA-repeat-expansion-based mouse model of Friedreich’s ataxia. Dis Model Mech 8:225–235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Al-Mahdawi S, Pinto RM, Ruddle P, Carroll C, Webster Z, Pook M (2004) GAA repeat instability in Friedreich ataxia YAC transgenic mice. Genomics 84:301–310

    Article  CAS  PubMed  Google Scholar 

  71. Chandran V, Gao K, Swarup V, Versano R, Dong H, Jordan MC, Geschwind DH (2017) Inducible and reversible phenotypes in a novel mouse model of Friedreich’s Ataxia. Elife 6

    Google Scholar 

  72. Sanchez-Casis G, Cote M, Barbeau A (1976) Pathology of the heart in Friedreich’s ataxia: review of the literature and report of one case. Can J Neurol Sci Le J Can des Sci Neurologiques 3:349–354

    Article  CAS  Google Scholar 

  73. Burk K (2017) Friedreich Ataxia: current status and future prospects. Cerebellum Ataxias 4:4

    Article  PubMed  PubMed Central  Google Scholar 

  74. Whitnall M, Suryo Rahmanto Y, Huang ML, Saletta F, Lok HC, Gutierrez L, Lazaro FJ, Fleming AJ, St Pierre TG, Mikhael MR, Ponka P, Richardson DR (2012) Identification of nonferritin mitochondrial iron deposits in a mouse model of Friedreich ataxia. Proc Natl Acad Sci U S A 109:20590–20595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Huang ML, Becker EM, Whitnall M, Suryo Rahmanto Y, Ponka P, Richardson DR (2009) Elucidation of the mechanism of mitochondrial iron loading in Friedreich’s ataxia by analysis of a mouse mutant. Proc Natl Acad Sci U S A 106:16381–16386

    Article  PubMed  PubMed Central  Google Scholar 

  76. Crooks DR, Natarajan TG, Jeong SY, Chen C, Park SY, Huang H, Ghosh MC, Tong WH, Haller RG, Wu C, Rouault TA (2014) Elevated FGF21 secretion, PGC-1alpha and ketogenic enzyme expression are hallmarks of iron-sulfur cluster depletion in human skeletal muscle. Hum Mol Genet 23:24–39

    Article  CAS  PubMed  Google Scholar 

  77. Rouault TA (2016) Mitochondrial iron overload: causes and consequences. Curr Opin Genet Dev 38:31–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Koeppen AH, Mazurkiewicz JE (2013) Friedreich ataxia: neuropathology revised. J Neuropathol Exp Neurol 72:78–90

    Article  CAS  PubMed  Google Scholar 

  79. Harding AE (1981) Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104:589–620

    Article  CAS  PubMed  Google Scholar 

  80. Rance G, Corben L, Delatycki M (2012) Auditory processing deficits in children with Friedreich ataxia. J Child Neurol 27:1197–1203

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rance G, Fava R, Baldock H, Chong A, Barker E, Corben L, Delatycki MB (2008) Speech perception ability in individuals with Friedreich ataxia. Brain 131:2002–2012

    Article  PubMed  Google Scholar 

  82. Koeppen AH, Michael SC, Knutson MD, Haile DJ, Qian J, Levi S, Santambrogio P, Garrick MD, Lamarche JB (2007) The dentate nucleus in Friedreich’s ataxia: the role of iron-responsive proteins. Acta Neuropathol 114:163–173

    Article  CAS  PubMed  Google Scholar 

  83. Ward PGD, Harding IH, Close TG, Corben LA, Delatycki MB, Storey E, Georgiou-Karistianis N, Egan GF (2019) Longitudinal evaluation of iron concentration and atrophy in the dentate nuclei in friedreich ataxia. Mov Disord 34:335–343

    Article  CAS  PubMed  Google Scholar 

  84. Koeppen AH (2011) Friedreich’s ataxia: pathology, pathogenesis, and molecular genetics. J Neurol Sci 303:1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Koeppen AH, Ramirez RL, Yu D, Collins SE, Qian J, Parsons PJ, Yang KX, Chen Z, Mazurkiewicz JE, Feustel PJ (2012) Friedreich’s ataxia causes redistribution of iron, copper, and zinc in the dentate nucleus. Cerebellum 11:845–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Boddaert N, Le Quan Sang KH, Rotig A, Leroy-Willig A, Gallet S, Brunelle F, Sidi D, Thalabard JC, Munnich A, Cabantchik ZI (2007) Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 110:401–408

    Article  CAS  PubMed  Google Scholar 

  87. Waldvogel D, van Gelderen P, Hallett M (1999) Increased iron in the dentate nucleus of patients with Friedrich’s ataxia. Ann Neurol 46:123–125

    Article  CAS  PubMed  Google Scholar 

  88. Koeppen AH, Morral JA, Davis AN, Qian J, Petrocine SV, Knutson MD, Gibson WM, Cusack MJ, Li D (2009) The dorsal root ganglion in Friedreich’s ataxia. Acta Neuropathol 118:763–776

    Article  PubMed  Google Scholar 

  89. Morral JA, Davis AN, Qian J, Gelman BB, Koeppen AH (2010) Pathology and pathogenesis of sensory neuropathy in Friedreich’s ataxia. Acta Neuropathol 120:97–108

    Article  PubMed  Google Scholar 

  90. Simon D, Seznec H, Gansmuller A, Carelle N, Weber P, Metzger D, Rustin P, Koenig M, Puccio H (2004) Friedreich ataxia mouse models with progressive cerebellar and sensory ataxia reveal autophagic neurodegeneration in dorsal root ganglia. J Neurosci 24:1987–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Koeppen AH, Ramirez RL, Becker AB, Bjork ST, Levi S, Santambrogio P, Parsons PJ, Kruger PC, Yang KX, Feustel PJ, Mazurkiewicz JE (2015) The pathogenesis of cardiomyopathy in Friedreich ataxia. PLoS ONE 10:e0116396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Michael S, Petrocine SV, Qian J, Lamarche JB, Knutson MD, Garrick MD, Koeppen AH (2006) Iron and iron-responsive proteins in the cardiomyopathy of Friedreich’s ataxia. Cerebellum 5:257–267

    Article  CAS  PubMed  Google Scholar 

  93. Kruger PC, Yang KX, Parsons PJ, Becker AB, Feustel PJ, Koeppen AH (2016) Abundance and significance of Iron, Zinc, Copper, and Calcium in the hearts of patients with Friedreich Ataxia. Am J Cardiol 118:127–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Garg M, Kulkarni SD, Shah KN, Hegde AU (2017) Diabetes Mellitus as the Presenting Feature of Friedreich’s Ataxia. J Neurosci Rural Pract 8:S117–S119

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cnop M, Igoillo-Esteve M, Rai M, Begu A, Serroukh Y, Depondt C, Musuaya AE, Marhfour I, Ladriere L, Moles Lopez X, Lefkaditis D, Moore F, Brion JP, Cooper JM, Schapira AH, Clark A, Koeppen AH, Marchetti P, Pandolfo M, Eizirik DL, Fery F (2012) Central role and mechanisms of beta-cell dysfunction and death in friedreich ataxia-associated diabetes. Ann Neurol 72:971–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Del Guerra S, D’Aleo V, Gualtierotti G, Pandolfi R, Boggi U, Vistoli F, Barnini S, Filipponi F, Del Prato S, Lupi R (2012) Evidence for a role of frataxin in pancreatic islets isolated from multi-organ donors with and without type 2 diabetes mellitus. Horm Metab Res 44:471–475

    Article  PubMed  CAS  Google Scholar 

  97. Igoillo-Esteve M, Gurgul-Convey E, Hu A, Romagueira Bichara Dos Santos L, Abdulkarim B, Chintawar S, Marselli L, Marchetti P, Jonas JC, Eizirik DL, Pandolfo M, Cnop M (2015) Unveiling a common mechanism of apoptosis in beta-cells and neurons in Friedreich’s ataxia. Hum Mol Genet 24:2274–2286

    Google Scholar 

  98. Tai G, Corben LA, Yiu EM, Milne SC, Delatycki MB (2018) Progress in the treatment of Friedreich ataxia. Neurol Neurochir Pol 52:129–139

    Article  PubMed  Google Scholar 

  99. Perdomini M, Belbellaa B, Monassier L, Reutenauer L, Messaddeq N, Cartier N, Crystal RG, Aubourg P, Puccio H (2014) Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat Med 20:542–547

    Article  CAS  PubMed  Google Scholar 

  100. Piguet F, de Montigny C, Vaucamps N, Reutenauer L, Eisenmann A, Puccio H (2018) Rapid and complete reversal of sensory Ataxia by gene therapy in a novel model of Friedreich Ataxia. Mol Ther 26:1940–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhao H, Li H, Hao S, Chen J, Wu J, Song C, Zhang M, Qiao T, Li K (2017) Peptide SS-31 upregulates frataxin expression and improves the quality of mitochondria: implications in the treatment of Friedreich ataxia. Sci Rep 7:9840

    Article  PubMed  PubMed Central  Google Scholar 

  102. Rocca CJ, Goodman SM, Dulin JN, Haquang JH, Gertsman I, Blondelle J, Smith JLM, Heyser CJ, Cherqui S (2017) Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich’s ataxia. Sci Transl Med 9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Kemp KC, Hares K, Redondo J, Cook AJ, Haynes HR, Burton BR, Pook MA, Rice CM, Scolding NJ, Wilkins A (2018) Bone marrow transplantation stimulates neural repair in Friedreich’s ataxia mice. Ann Neurol 83:779–793

    Article  PubMed  PubMed Central  Google Scholar 

  104. Riederer P, Rausch WD, Schmidt B, Kruzik P, Konradi C, Sofic E, Danielczyk W, Fischer M, Ogris E (1988) Biochemical fundamentals of Parkinson’s disease. Mt Sinai J Med 55:21–28

    CAS  PubMed  Google Scholar 

  105. Nunez MT, Chana-Cuevas P (2018) New perspectives in iron chelation therapy for the treatment of neurodegenerative diseases. Pharmaceuticals (Basel) 11

    Google Scholar 

  106. Pandolfo M, Hausmann L (2013) Deferiprone for the treatment of Friedreich’s ataxia. J Neurochem 126(Suppl 1):142–146

    Article  CAS  PubMed  Google Scholar 

  107. Li K, Besse EK, Ha D, Kovtunovych G, Rouault TA (2008) Iron-dependent regulation of frataxin expression: implications for treatment of Friedreich ataxia. Hum Mol Genet 17:2265–2273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Elincx-Benizri S, Glik A, Merkel D, Arad M, Freimark D, Kozlova E, Cabantchik I, Hassin-Baer S (2016) Clinical experience with deferiprone treatment for Friedreich Ataxia. J Child Neurol 31:1036–1040

    Article  PubMed  Google Scholar 

  109. Youdim MB, Fridkin M, Zheng H (2004) Novel bifunctional drugs targeting monoamine oxidase inhibition and iron chelation as an approach to neuroprotection in Parkinson’s disease and other neurodegenerative diseases. J Neural Transm (Vienna) 111:1455–1471

    Article  CAS  Google Scholar 

  110. Singh YP, Pandey A, Vishwakarma S, Modi G (2018) A review on iron chelators as potential therapeutic agents for the treatment of Alzheimer’s and Parkinson’s diseases. Mol Divers

    Google Scholar 

  111. Youdim MB, Fridkin M, Zheng H (2005) Bifunctional drug derivatives of MAO-B inhibitor rasagiline and iron chelator VK-28 as a more effective approach to treatment of brain ageing and ageing neurodegenerative diseases. Mech Ageing Dev 126:317–326

    Article  CAS  PubMed  Google Scholar 

  112. Szeto HH (2014) First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol 171:2029–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Myers L, Farmer JM, Wilson RB, Friedman L, Tsou A, Perlman SL, Subramony SH, Gomez CM, Ashizawa T, Wilmot GR, Mathews KD, Balcer LJ, Lynch DR (2008) Antioxidant use in Friedreich ataxia. J Neurol Sci 267:174–176

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuanyu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, K. (2019). Iron Pathophysiology in Friedreich’s Ataxia. In: Chang, YZ. (eds) Brain Iron Metabolism and CNS Diseases. Advances in Experimental Medicine and Biology, vol 1173. Springer, Singapore. https://doi.org/10.1007/978-981-13-9589-5_7

Download citation

Publish with us

Policies and ethics