Skip to main content

Cellular Iron Metabolism and Regulation

  • Chapter
  • First Online:
Brain Iron Metabolism and CNS Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1173))

Abstract

Iron is an essential trace element in the human body, but excess iron is toxic as it contributes to oxidative damage. To keep iron concentration within the optimal physiologic range, iron metabolism at the cellular level and the whole systemic level are tightly regulated. Balance of iron homeostasis depends on the expression levels and activities of iron carriers, iron transporters, and iron regulatory and storage proteins. Divalent metal transporter 1 (DMT1) at the apical membrane of intestinal enterocyte brings in non-heme iron from the diet, whereas ferroportin 1 (FPN1) at the basal membrane exports iron into the circulation. Plasma transferrin (Tf) then carries iron to various tissues and cells. After binding to transferrin receptor 1 (TfR1), the complex is endocytosed into the cell, where iron enters the cytoplasm via DMT1 on the endosomal membrane. Free iron is either utilized in metabolic processes, such as synthesis of hemoglobin and Fe–S cluster, or sequestered in the cytosolic ferritin, serving as a cellular iron store. Excess iron can be exported from the cell via FPN1. The liver-derived peptide hepcidin plays a major regulatory role in controlling FPN1 level in the enterocyte, and thus controls the whole-body iron absorption. Inside the cells, iron regulatory proteins (IRPs) modulate the expressions of DMT1, TfR1, ferritin, and FPN1 via binding to the iron-responsive element (IRE) in their mRNAs. Both the release of hepcidin and the IRP–IRE interaction are coordinated with the fluctuation of the cellular iron level. Therefore, an adequate and steady iron supplement is warranted for the utilization of cells around the body. Investigations on the molecular mechanisms of cellular iron metabolism and regulation could advance the fields of iron physiology and pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muckenthaler MU, Rivella S, Hentze MW, Galy B (2017) A red carpet for iron metabolism. Cell 168(3):344–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anderson GJ, Wang F (2012) Essential but toxic: controlling the flux of iron in the body. Clin Exp Pharmacol Physiol 39(8):719–724

    Article  CAS  PubMed  Google Scholar 

  3. Aisen P, Leibman A, Zweier J (1978) Stoichiometric and site characteristics of the binding of iron to human transferrin. J Biol Chem 253(6):1930–1937

    CAS  PubMed  Google Scholar 

  4. Huebers HA, Finch CA (1987) The physiology of transferrin and transferrin receptors. Physiol Rev 67(2):520–582

    Article  CAS  PubMed  Google Scholar 

  5. Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275(3):161–203

    Article  PubMed  Google Scholar 

  6. Drakesmith H, Nemeth E, Ganz T (2015) Ironing out ferroportin. Cell Metab 22(5):777–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Paoli M, Marles-Wright J, Smith A (2002) Structure-function relationships in heme-proteins. DNA Cell Biol 21(4):271–280

    Article  CAS  PubMed  Google Scholar 

  8. Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Two to tango: regulation of Mammalian iron metabolism. Cell 142(1):24–38

    Article  CAS  PubMed  Google Scholar 

  9. Aisen P (1992) Entry of iron into cells: a new role for the transferrin receptor in modulating iron release from transferrin. Ann Neurol 32(Suppl):S62–S68

    Article  CAS  PubMed  Google Scholar 

  10. Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276(11):7806–7810

    Article  CAS  PubMed  Google Scholar 

  11. Nicolas G, Chauvet C, Viatte L, Danan JL, Bigard X, Devaux I et al (2002) The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 110(7):1037–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramey G, Deschemin JC, Durel B, Canonne-Hergaux F, Nicolas G, Vaulont S (2010) Hepcidin targets ferroportin for degradation in hepatocytes. Haematologica 95(3):501–504

    Article  CAS  PubMed  Google Scholar 

  13. Beutler E (2004) Cell biology. “Pumping” iron: the proteins. Science 306(5704):2051–2053

    Article  CAS  PubMed  Google Scholar 

  14. Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM et al (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306(5704):2090–2093

    Article  CAS  PubMed  Google Scholar 

  15. Parrow NL, Fleming RE (2014) Bone morphogenetic proteins as regulators of iron metabolism. Annu Rev Nutr 34(34):77–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ganz T (2011) Hepcidin and iron regulation, 10 years later. Blood 117(17):4425–4433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rouault TA (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2(8):406–414

    Article  CAS  PubMed  Google Scholar 

  18. Leipuviene R, Theil EC (2007) The family of iron responsive RNA structures regulated by changes in cellular iron and oxygen. Cell Mol Life Sci 64(22):2945–2955

    Article  CAS  PubMed  Google Scholar 

  19. Meyron-Holtz EG, Ghosh MC, Rouault TA (2004) Mammalian tissue oxygen levels modulate iron-regulatory protein activities in vivo. Science 306(5704):2087–2090

    Article  CAS  PubMed  Google Scholar 

  20. Anderson GJ, Frazer DM (2017) Current understanding of iron homeostasis. Am J Clin Nutr 106(Suppl 6):1559S–1566S

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bali PK, Zak O, Aisen P (1991) A new role for the transferrin receptor in the release of iron from transferrin. Biochemistry 30(2):324–328

    Article  CAS  PubMed  Google Scholar 

  22. Cheng Y, Zak O, Aisen P, Harrison SC, Walz T (2004) Structure of the human transferrin receptor-transferrin complex. Cell 116(4):565–576

    Article  CAS  PubMed  Google Scholar 

  23. Wallander ML, Leibold EA, Eisenstein RS (2006) Molecular control of vertebrate iron homeostasis by iron regulatory proteins. Biochim Biophys Acta 1763(7):668–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF et al (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388(6641):482–488

    Article  CAS  PubMed  Google Scholar 

  25. Fleming MD, Trenor CC, Su MA, Foernzler D, Beier DR, Dietrich WF et al (1997) Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet 16(4):383–386

    Article  CAS  PubMed  Google Scholar 

  26. Garrick MD, Dolan KG, Horbinski C, Ghio AJ, Higgins D, Porubcin M et al (2003) DMT1: a mammalian transporter for multiple metals. Biometals 16(1):41–54

    Article  CAS  PubMed  Google Scholar 

  27. Theil EC (1987) Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem 56:289–315

    Article  CAS  PubMed  Google Scholar 

  28. Arosio P, Ingrassia R, Cavadini P (2009) Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta 1790(7):589–599

    Article  CAS  PubMed  Google Scholar 

  29. Levi S, Corsi B, Bosisio M, Invernizzi R, Volz A, Sanford D et al (2001) A human mitochondrial ferritin encoded by an intronless gene. J Biol Chem 276(27):24437–24440

    Article  CAS  PubMed  Google Scholar 

  30. Corsi B, Cozzi A, Arosio P, Drysdale J, Santambrogio P, Campanella A et al (2002) Human mitochondrial ferritin expressed in HeLa cells incorporates iron and affects cellular iron metabolism. J Biol Chem 277(25):22430–22437

    Article  CAS  PubMed  Google Scholar 

  31. Nie G, Sheftel AD, Kim SF, Ponka P (2005) Overexpression of mitochondrial ferritin causes cytosolic iron depletion and changes cellular iron homeostasis. Blood 105(5):2161–2167

    Article  CAS  PubMed  Google Scholar 

  32. Santambrogio P, Biasiotto G, Sanvito F, Olivieri S, Arosio P, Levi S (2007) Mitochondrial ferritin expression in adult mouse tissues. J Histochem Cytochem 55(11):1129–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cocco E, Porrini V, Derosas M, Nardi V, Biasiotto G, Maccarinelli F et al (2013) Protective effect of mitochondrial ferritin on cytosolic iron dysregulation induced by doxorubicin in HeLa cells. Mol Biol Rep 40(12):6757–6764

    Article  CAS  PubMed  Google Scholar 

  34. Wang L, Yang H, Zhao S, Sato H, Konishi Y, Beach TG et al (2011) Expression and localization of mitochondrial ferritin mRNA in Alzheimer’s disease cerebral cortex. PLoS ONE 6(7):e22325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Abboud S, Haile DJ (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 275(26):19906–19912

    Article  CAS  PubMed  Google Scholar 

  36. Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J et al (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403(6771):776–781

    Article  CAS  PubMed  Google Scholar 

  37. McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D et al (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5(2):299–309

    Article  CAS  PubMed  Google Scholar 

  38. Knutson MD, Oukka M, Koss LM, Aydemir F, Wessling-Resnick M (2005) Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin. Proc Natl Acad Sci USA 102(5):1324–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lymboussaki A, Pignatti E, Montosi G, Garuti C, Haile DJ, Pietrangelo A (2003) The role of the iron responsive element in the control of ferroportin1/IREG1/MTP1 gene expression. J Hepatol 39(5):710–715

    Article  CAS  PubMed  Google Scholar 

  40. Qiao B, Sugianto P, Fung E, del-Castillo-Rueda A, Moran-Jimenez MJ, Ganz T et al (2012) Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Cell Metab 15(6):918–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Preza GC, Pinon R, Ganz T, Nemeth E (2013) Cellular catabolism of the iron-regulatory peptide hormone hepcidin. PLoS ONE 8(3):e58934

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhang DL, Rouault TA (2018) How does hepcidin hinder ferroportin activity? Blood 131(8):840–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang DL, Wu J, Shah BN, Greutelaers KC, Ghosh MC, Ollivierre H et al (2018) Erythrocytic ferroportin reduces intracellular iron accumulation, hemolysis, and malaria risk. Science 359(6383):1520–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang L, Liu X, You LH, Ci YZ, Chang S, Yu P et al (2019) Hepcidin and iron regulatory proteins coordinately regulate ferroportin 1 expression in the brain of mice. J Cell Physiol 234(5):7600–7607

    Article  CAS  PubMed  Google Scholar 

  45. Pantopoulos K (2004) Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci 1012:1–13

    Article  CAS  PubMed  Google Scholar 

  46. Nemeth E, Valore EV, Territo M, Schiller G, Lichtenstein A, Ganz T (2003) Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 101(7):2461–2463

    Article  CAS  PubMed  Google Scholar 

  47. Vokurka M, Krijt J, Sulc K, Necas E (2006) Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis. Physiol Res 55(6):667–674

    CAS  PubMed  Google Scholar 

  48. Zimmermann MB, Hurrell RF (2007) Nutritional iron deficiency. Lancet 370(9586):511–520

    Article  CAS  PubMed  Google Scholar 

  49. Naigamwalla DZ, Webb JA, Giger U (2012) Iron deficiency anemia. Can Vet J-Revue Vet Can 53(3):250–256

    Google Scholar 

  50. Finberg KE, Heeney MM, Campagna DR, Aydinok Y, Pearson HA, Hartman KR et al (2008) Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nat Genet 40(5):569–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Powers JM, Buchanan GR (2014) Diagnosis and management of iron deficiency anemia. Hematol Oncol Clin North Am 28(4):729–745, vi–vii

    Article  PubMed  Google Scholar 

  52. Peng YY, Uprichard J (2017) Ferritin and iron studies in anaemia and chronic disease. Ann Clin Biochem 54(1):43–48

    Article  CAS  PubMed  Google Scholar 

  53. Camaschella C (2017) New insights into iron deficiency and iron deficiency anemia. Blood Rev 31(4):225–233

    Article  CAS  PubMed  Google Scholar 

  54. Fleming RE, Ponka P (2012) Iron overload in human disease. N Engl J Med 366(4):348–359

    Article  CAS  PubMed  Google Scholar 

  55. Anderson GJ (2007) Mechanisms of iron loading and toxicity. Am J Hematol 82(12):1128–1131

    Article  CAS  PubMed  Google Scholar 

  56. Doyle A, Rusli F, Bhathal P (2015) Aceruloplasminaemia: a rare but important cause of iron overload. BMJ Case Rep 2015

    Google Scholar 

  57. Kew MC (2014) Hepatic iron overload and hepatocellular carcinoma. Liver Cancer 3(1):31–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13(10):1045–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pietrangelo A (2010) Hereditary hemochromatosis: pathogenesis, diagnosis, and treatment. Gastroenterology 139(2):393–408, 408 e391–e392

    Article  Google Scholar 

  60. Barton JC, Edwards CQ, Acton RT (2015) HFE gene: structure, function, mutations, and associated iron abnormalities. Gene 574(2):179–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Taher AT, Weatherall DJ, Cappellini MD (2018) Thalassaemia. Lancet 391(10116):155–167

    Article  PubMed  Google Scholar 

  62. Olivieri NF, Brittenham GM (2013) Management of the thalassemias. Cold Spring Harb Perspect Med 3(6)

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ndayisaba A, Kaindlstorfer C, Wenning GK (2019) Iron in neurodegeneration—cause or consequence? Front Neurosci 13:180

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rouault TA (2013) Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci 14(8):551–564

    Article  CAS  PubMed  Google Scholar 

  65. Dusek P, Schneider SA, Aaseth J (2016) Iron chelation in the treatment of neurodegenerative diseases. J Trace Elem Med Biol 38:81–92

    Article  CAS  PubMed  Google Scholar 

  66. Crapper McLachlan DR, Dalton AJ, Kruck TP, Bell MY, Smith WL, Kalow W et al (1991) Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet 337(8753):1304–1308

    Article  CAS  PubMed  Google Scholar 

  67. Zhang Y, He ML (2017) Deferoxamine enhances alternative activation of microglia and inhibits amyloid beta deposits in APP/PS1 mice. Brain Res 1677:86–92

    Article  CAS  PubMed  Google Scholar 

  68. You L, Wang J, Liu T, Zhang Y, Han X, Wang T et al (2018) Targeted brain delivery of rabies virus glycoprotein 29-modified deferoxamine-loaded nanoparticles reverses functional deficits in parkinsonian mice. ACS Nano 12(5):4123–4139

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guofen Gao or Yan-Zhong Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, G., Li, J., Zhang, Y., Chang, YZ. (2019). Cellular Iron Metabolism and Regulation. In: Chang, YZ. (eds) Brain Iron Metabolism and CNS Diseases. Advances in Experimental Medicine and Biology, vol 1173. Springer, Singapore. https://doi.org/10.1007/978-981-13-9589-5_2

Download citation

Publish with us

Policies and ethics