Skip to main content

Enhanced Shortest Path Routing Protocol Using Fuzzy C-Means Clustering for Compromised WSN to Control Risk

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 82))

Abstract

In military, agriculture, industrial and commercial areas the wireless sensor network (WSNs) is broadly utilized. The safety of WSNs is a significant problem and they are attracting greater attention. WSNs are very susceptible for inner attacks from the cooperated nodes. In WSN, this is a frequent way for the conflict to attack some nodes to interrupt, tamper with/leave valued packages. To find the Compromised Nodes (CNs), we can hire a reputation system. This article shows the regions which cover the dense set of CNs named Compromised Regions (CRs) and obviously it is a major threat to networks as compared to only CNs. For preventing the attacks of CRs, we plan an Enhanced Secure Shortest Path Routing Algorithm (ESPRA) to carry bundles correctly everywhere, instead of CRs. As previous works have used K-means and DBSCAN algorithm for selection of cluster head but failed to opt optimal cluster head. Therefore, we have proposed a fuzzy C-means clustering to split the sensor hubs to prolong network lifetime along with optimal cluster head and QuickHull algorithm to construct convex hull for each cluster. Simulation outcomes demonstrate that ESPRA could always discover the short routing pathways, whereas assuring the packages safety and improving the accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gerrigagoitia, K., & Uribeetxeberria, R. (2014). Reputation-based intrusion detection system for wireless sensor networks. In Complexity in engineering (pp. 1–5).

    Google Scholar 

  2. Das, S. K., Yadav, A. K., & Tripathi, S. (2017). IE2M: Design of intellectual energy efficient multicast routing protocol for ad-hoc network. Peer-to-Peer Networking and Applications, 10(3), 670–687. https://doi.org/10.1007/s12083-016-0532-6.

    Article  Google Scholar 

  3. Fu, J. S., & Liu, Y. (2015). Double cluster heads model for secure and accurate data fusion in wireless sensor networks. Sensors, 15(1), 2021–2040.

    Article  MathSciNet  Google Scholar 

  4. Niculescu, D., & Nath, B. (2003). Trajectory based forwarding and its applications. In Proceedings of the 9th Annual International Conference on Mobile Computing and Networking (pp. 260–272). ACM.

    Google Scholar 

  5. Yadav, A. K., Das, S. K., & Tripathi, S. (2017). EFMMRP: Design of efficient fuzzy based multi-constraint multicast routing protocol for wireless ad-hoc network. Computer Networks, 118, 15–23.

    Article  Google Scholar 

  6. Das, S. K., & Tripathi, S. (2018). Intelligent energy-aware efficient routing for MANET. Wireless Networks, 24(4), 1139–1159. https://doi.org/10.1007/s11276-016-1388-7 (Springer).

    Article  Google Scholar 

  7. Das, S. K., & Tripathi, S. (2019). Energy efficient routing formation algorithm for hybrid ad-hoc network: A geometric programming approach. Peer-to-Peer Networking and Applications, 12(1), 102–128. https://doi.org/10.1007/s12083-018-0643-3 (Springer).

    Article  Google Scholar 

  8. Das, S. K., & Tripathi, S. (2018). Adaptive and intelligent energy efficient routing for transparent heterogeneous ad-hoc network by fusion of game theory and linear programming. Applied Intelligence, 48(7), 1825–1845. https://doi.org/10.1007/s10489-017-1061-6.

    Article  Google Scholar 

  9. Das, S. K., & Tripathi, S. (2017). Energy efficient routing formation technique for hybrid ad hoc network using fusion of artificial intelligence techniques. International Journal of Communication Systems, 30(16). https://doi.org/10.1002/dac.3340.

    Article  Google Scholar 

  10. Perrig, A., Stankovic, J., & Wagner, D. (2004). Security in wireless sensor networks. ACM Communication, 47(6), 53–57.

    Article  Google Scholar 

  11. Krauß, C., Schneider, M., & Eckert, C. (2008). On handling insider attacks in wireless sensor networks. Information Security Technical Report, 13(3), 165–172.

    Google Scholar 

  12. Khalil, I., Bagchi, S., & Nina-Rotaru, C. (2005). DICAS: Detection, diagnosis and isolation of control attacks in sensor networks. In 1st International Conference on Security and Privacy for Emerging Areas in Communications Networks, SECURECOMM.

    Google Scholar 

  13. Conti, M., Pietro, R. D., Mancini, L. V., & Mei, A. (2008). Emergent properties: Detection of the node-capture attack in mobile wireless sensor networks. In WiSec 2008: 1st Conference on Wireless Network Security (pp. 214–219). New York: ACM.

    Google Scholar 

  14. Seshadri, A., Perrig, A., Van Doorn, L., & Khosla, P. (2004). SWATT: Software-based attestation for embedded devices. In Proceedings of the IEEE Symposium on Security and Privacy.

    Google Scholar 

  15. Krauß, C., Stumpf, F., & Eckert, C. M. (2007). Detecting node compromise in hybrid WSN using attestation techniques. In F. Stajano, C. Meadows, S. Capkun, & T. Moore (Eds.), ESAS 2007 (Vol. 4572, pp. 203–217)., LNCS Heidelberg: Springer.

    Google Scholar 

  16. Karp, B., & Kung, H. T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th Annual International Conference on Mobile Computing and Networking (pp. 243–254). ACM.

    Google Scholar 

  17. Intanagonwiwat, C., Govindan, R., & Estrin, D. (2000). Directed diffusion: A scalable and robust communication paradigm for sensor networks. In Proceedings of the 6th Annual International Conference on Mobile Computing and Networking (pp. 56–67). ACM.

    Google Scholar 

  18. Heinzelman, W. B., & Chandrakasan, A. P. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

    Article  Google Scholar 

  19. Johnson, D., Hu, Y., & Maltz, D. (2007). The dynamic source routing protocol for mobile ad hoc networks for IPv4, No. RFC (p. 4728).

    Google Scholar 

  20. Zhang, D., Li, G., et al. (2014). An energy-balanced routing method based on forward-aware factor for wireless sensor networks. IEEE Transactions on Industrial Informatics, 10(1), 766–773.

    Article  Google Scholar 

  21. Su, S., & Zhao, S. (2018). An optimal clustering mechanism based on Fuzzy-C means for wireless sensor networks. ScienceDirect.

    Google Scholar 

  22. So, J., & Byun, H. (2017). Load-balanced opportunistic routing for duty-cycled wireless sensor networks. IEEE Transactions on Mobile Computing, 16(7), 1940–1955.

    Article  Google Scholar 

  23. Ester, M., Kriegel, H. P., Sander, J., et al. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In International Conference on Knowledge Discovery and Data Mining (pp. 226–231).

    Google Scholar 

  24. Huang, H., Yin, H., Min, G., et al. (2017). Coordinate-assisted routing approach to bypass routing holes in wireless sensor networks. IEEE Communications Magazine, 55(7), 180–185.

    Article  Google Scholar 

  25. Graham, R. L. (1972). An efficient algorithm for determining the convex hull of a finite planar set. Information Processing Letters, 1(4), 132–133.

    Article  Google Scholar 

  26. Luo, J., Hu, J., Wu, D., et al. (2017). Opportunistic routing algorithm for relay node selection in wireless sensor networks. IEEE Transactions on Industrial Informatics, 11(1), 112–121.

    Article  Google Scholar 

  27. Liu, Y., Dong, M., Ota, K., et al. (2017). ActiveTrust: Secure and trustable routing in wireless sensor networks. IEEE Transactions on Information Forensics and Security, 11(9), 2013–2027.

    Article  Google Scholar 

  28. Zhu, C., & Nicanfar, H. (2015). An authenticated trust and reputation calculation and management system for cloud and sensor networks integration. IEEE Transactions on Information Forensics and Security, 10(1), 118–131.

    Article  Google Scholar 

  29. Berg, M. D., et al. (2000) Computational geometry. In Computational geometry (pp. 1–17).

    Google Scholar 

  30. Ganeriwal, S., Balzano, L. K., & Srivastava, M. B. (2008). Reputation-based framework for high integrity sensor networks. ACM Transactions on Sensor Networks, 4(3), 15.

    Article  Google Scholar 

  31. Kuila, P., & Jana, P. K. (2014). Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach. Engineering Applications of Artificial Intelligence, 33, 127–140.

    Article  Google Scholar 

  32. Arora, A., Dutta, P., et al. (2004). A line in the sand: A wireless sensor network for target detection, classification, and tracking. Computer Networks, 46(5), 605–634.

    Article  Google Scholar 

  33. Ozdemir, S. (2008). Functional reputation based data aggregation for wireless sensor networks. In Proceedings of the WIMOB’08, IEEE International Conference on Wireless and Mobile Computing Networking and Communications (pp. 592–597).

    Google Scholar 

  34. Fang, W., et al. (2015). BTRES: Beta-based trust and reputation evaluation system for wireless sensor networks. Elsevier Ltd. ISSN: 1084-8045.

    Google Scholar 

  35. Barber, C. B., Dobkin, D. P., & Huhdanpaa, H. (1996). The quickhull algorithm for convex hulls. ACM Trans Math Software (TOMS), 22(4), 469–483.

    Article  MathSciNet  Google Scholar 

  36. Yang, S. L., Li, Y. S., Hu, X. X., et al. (2006). Optimization study on k value of Kmeans algorithm. Systems Engineering-Theory and Practice, 26(2), 97–101.

    MathSciNet  Google Scholar 

  37. Binh, H. T. T., & Dey, N. (Eds.). (2018). Soft computing in wireless sensor networks. CRC Press.

    Google Scholar 

  38. Fong, S., Li, J., Song, W., Tian, Y., Wong, R. K., & Dey, N. (2018). Predicting unusual energy consumption events from smart home sensor network by data stream mining with misclassified recall. Journal of Ambient Intelligence and Humanized Computing, 1–25.

    Google Scholar 

  39. Chowdhuri, S., Chaudhuri, S. S., Banerjee, P., Dey, N., Mandal, A., & Santhil, V. (2016). Secure minimum loss route selection of MIMO-based MANET in combined (indoor, outdoor, and forest) terrain (pp. 1–26). Working paper, International Journal Advanced Intelligence Paradigms.

    Google Scholar 

  40. Dey, N., & Mukherjee, A. (2018). Embedded systems and robotics with open source tools. CRC Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R., Tripathi, S., Agrawal, R. (2020). Enhanced Shortest Path Routing Protocol Using Fuzzy C-Means Clustering for Compromised WSN to Control Risk. In: Das, S., Samanta, S., Dey, N., Kumar, R. (eds) Design Frameworks for Wireless Networks. Lecture Notes in Networks and Systems, vol 82. Springer, Singapore. https://doi.org/10.1007/978-981-13-9574-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9574-1_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9573-4

  • Online ISBN: 978-981-13-9574-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics