Skip to main content

Evolutionary Algorithms for Coverage and Connectivity Problems in Wireless Sensor Networks: A Study

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 82))

Abstract

Coverage and connectivity play a vital role in the performance and proper functioning of wireless sensor networks (WSNs). Proper deployment of the sensor nodes has strong impact on proper functioning of the network. Moreover, it can further reduce energy consumption of the networks. It is noteworthy that the sensor nodes have limited sensing and communication range. Moreover, energy source of the sensor nodes is also limited. Therefore, it is very challenging to maintain desired coverage and connectivity in the network. Furthermore, the sensor nodes are prone to failure. Hence, the target/region must be covered by sufficient number of sensor nodes to avoid damages due to failure of one or more sensor nodes. This is also essential for connectivity too. Nowadays, evolutionary algorithms become the center of attraction among the researchers to solve the different optimization problems in the WSN. This chapter aims to study and analyze the various evolutionary approaches like genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO), etc. which are applied to solve the coverage and connectivity problems for WSN. The existing approaches are described with suitable illustration. Moreover, this chapter has highlighted few research challenges related to coverage and connectivity of WSNs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kuila, P., & Jana, P. K. (2014). Energy efficient clustering and routing algorithms for wireless sensor networks: Particle swarm optimization approach. Engineering Applications of Artificial Intelligence, 33, 127–140.

    Article  Google Scholar 

  2. Kuila, P., & Jana, P. K. (2017). Clustering and routing algorithms for wireless sensor networks: energy efficient approaches (1st ed.). CRC Press (Taylor & Francis Group). ISBN-13: 978-1498753821.

    Google Scholar 

  3. Azharuddin, Md., Kuila, P., & Jana, P. K. (2015). Energy efficient fault tolerant clustering and routing algorithms for wireless sensor networks. Computers & Electrical Engineering, 41, 177–190 (Elsevier).

    Google Scholar 

  4. Kuila, P., & Jana, P. K. (2014). A novel differential evolution based clustering algorithm for wireless sensor networks. Applied Soft Computing, 25, 414–425 (Elsevier).

    Google Scholar 

  5. Cardei, I., & Cardei, M. (2008). Energy-efficient connected-coverage in wireless sensor networks. International Journal of Sensor Networks, 3(3), 201–210.

    Article  Google Scholar 

  6. Binh, H. T. T., & Dey, N. (2018). Soft computing in wireless sensor networks. CRC Press.

    Google Scholar 

  7. Kuila, P., & Jana, P. K. (2016). Evolutionary computing approaches for clustering and routing in wireless sensor networks. In Handbook of research on natural computing for optimization problems (pp. 246–266). IGI Global. ISBN 9781522500582.

    Google Scholar 

  8. Kuila, P., & Jana, P. K. (2014). Approximation schemes for load balanced clustering in wireless sensor networks. Journal of Supercomputing, 68, 87–105 (Springer).

    Google Scholar 

  9. Kuila, P., Gupta, S. K., & Jana, P. K. (2013). A novel evolutionary approach for load balanced clustering problem for wireless sensor networks. Swarm and Evolutionary Computation, 12, 48–56 (Elsevier).

    Google Scholar 

  10. Kuila, P., & Jana, P. K. (2014). Heap and Parameter Based Load Balanced Clustering Algorithms For Wireless Sensor Networks. International Journal of Communication Networks and Distributed Systems, 14(4), 413–432.

    Google Scholar 

  11. Kuila, P., & Jana P. K. (2012). Improved load balanced clustering algorithm for wireless sensor networks. LNCS, 7135, 399–404 (Springer).

    Google Scholar 

  12. Kuila, P., & Jana, P. K. (2012). Energy efficient load-balanced clustering algorithm for wireless sensor networks. Procedia Technology, 6, 771–777 (Elsevier).

    Google Scholar 

  13. Kuila, P., & Jana, P. K. (2012). An energy balanced distributed clustering and routing algorithm for wireless sensor networks. In PDGC 2012 (pp. 220–225). IEEE Xplore.

    Google Scholar 

  14. Gupta, S. K., Kuila, P., & Jana, P. K. (2013). GAR: An energy efficient GA-based routing for wireless sensor networks. LNCS, 7753, 267–277 (Springer).

    Google Scholar 

  15. Gupta, S. K., Kuila, P., & Jana, P. K. (2013). Delay constraint energy efficient routing using multi-objective genetic algorithm in wireless sensor networks. In ICECCS 2013 (pp. 50–59). Tata McGraw-Hill.

    Google Scholar 

  16. Azharuddin, Md., Kuila, P., & Jana, P. K. (2013). A distributed fault-tolerant clustering algorithm for wireless sensor networks. In 2nd ICACCI 2013 (pp. 997–1002). IEEE Xplore.

    Google Scholar 

  17. Golberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison Wesley.

    Google Scholar 

  18. Gupta, S. K., Kuila, P., & Jana, P. K. (2014). E3BFT: energy efficient and energy balanced fault tolerance clustering in wireless sensor networks. In IC3I 2014 (pp. 714–719). IEEE Xplore.

    Google Scholar 

  19. Gupta, S. K., Kuila, P., Jana, P. K. (2016). Energy efficient multipath routing for wireless sensor networks: a genetic algorithm approach. In 5th ICACCI 2016 (pp. 1735–1740). IEEE Xplore.

    Google Scholar 

  20. Bose, A., Biswas, T., & Kuila P. (2019). A novel genetic algorithm based scheduling for multi-core systems. AISC, 851, 45–54 (Springer).

    Google Scholar 

  21. Harizan, S., & Kuila, P. (2019). Coverage and connectivity aware energy efficient scheduling in target based wireless sensor networks: An improved genetic algorithm based approach. Wireless Networks 25(4), 1995–2011.

    Google Scholar 

  22. Gupta, S. K., Kuila, P., & Jana, P. K. (2016) Genetic algorithm for k-connected relay node placement in wireless sensor networks. In Proceedings of the Second International Conference on Computer and Communication Technologies (Vol. 379, pp. 721–729). AISC. Springer.

    Google Scholar 

  23. Gupta, S. K., Kuila, P., & Jana, P. K. (2016). Genetic algorithm approach for k-coverage and m-connected node placement in target based wireless sensor networks. Computers & Electrical Engineering, 56, 544–556.

    Article  Google Scholar 

  24. Rebai, M., Snoussi, H., Hnaien, F., & Khoukhi, L. (2015). Sensor deployment optimization methods to achieve both coverage and connectivity in wireless sensor networks. Computers & Operations Research, 59, 11–21.

    Article  MathSciNet  Google Scholar 

  25. Karatas, M. (2018). Optimal deployment of heterogeneous sensor networks for a hybrid point and barrier coverage application. Computer Networks, 132, 129–144.

    Article  Google Scholar 

  26. Yoon, Y., & Kim, Y. H. (2013). An efficient genetic algorithm for maximum coverage deployment in wireless sensor networks. IEEE Transactions on Cybernetics, 43(5), 1473–1483.

    Article  Google Scholar 

  27. Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: Harmony search. Simulation, 76(2), 60–68.

    Article  Google Scholar 

  28. Moh’d, A. O., & Al-Ajouri, A. (2017). Maximizing wireless sensor network coverage with minimum cost using harmony search algorithm. IEEE Sensors Journal, 17(3), 882–896.

    Google Scholar 

  29. Jameii, S. M., Faez, K., & Dehghan, M. (2015). Multiobjective optimization for topology and coverage control in wireless sensor networks. International Journal of Distributed Sensor Networks, 11(2), 363815.

    Article  Google Scholar 

  30. Nezhad, S. E., Kamali, H. J., & Moghaddam, M. E. (2010). Solving K-coverage problem in wireless sensor networks using improved harmony search. In 2010 International Conference on Broadband, Wireless Computing, Communication and Applications (BWCCA) (pp. 49–55). IEEE.

    Google Scholar 

  31. Mohamed, S. M., Hamza, H. S., & Saroit, I. A. (2015). Harmony search-based k-coverage enhancement in wireless sensor networks. International Journal of Computer and Electrical Engineering, 9(1), 19924.

    Google Scholar 

  32. Sharma, D., & Gupta, V. (2017). Improving coverage and connectivity using harmony search algorithm in wireless sensor network. In International Conference on Emerging Trends in Computing and Communication Technologies (ICETCCT) (pp. 1–7). IEEE.

    Google Scholar 

  33. Manjarres, D., Del, S. J., Gil-Lopez, S., Vecchio, M., Landa-Torres, I., & Lopez-Valcarce, R. (2013). A novel heuristic approach for distance- and connectivity-based multihop node localization in wireless sensor networks. Soft Computing, 17(1), 17–28.

    Google Scholar 

  34. Dorigo, M., & Di, C. G. (1999). Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406) (Vol. 2, pp. 1470–1477). IEEE.

    Google Scholar 

  35. Sun, X., Zhang, Y., Ren, X., & Chen, K. (2015). Optimization deployment of wireless sensor networks based on culture-ant colony algorithm. Applied Mathematics and Computation, 250, 58–70.

    Article  MathSciNet  Google Scholar 

  36. Li, D., Liu, W., & Cui, L. (2010). EasiDesign: An improved ant colony algorithm for sensor deployment in real sensor network system. In 2010 IEEE Global Telecommunications Conference (GLOBECOM 2010) (pp. 1–5). IEEE.

    Google Scholar 

  37. Deif, D. S., & Gadallah, Y. (2017). An ant colony optimization approach for the deployment of reliable wireless sensor networks. IEEE Access, 5, 10744–10756.

    Article  Google Scholar 

  38. Huang, P., Lin, F., XuL, J., Kang, Z. L., Zhou, J. L., & Yu, J. S. (2017). Improved ACO-based sweep coverage scheme considering data delivery. International Journal of Simulation Modelling, 16(2), 289–301.

    Article  Google Scholar 

  39. Liao, W. H., Kuai, S. C., & Lin, M. S. (2015). An energy-efficient sensor deployment scheme for wireless sensor networks using ant colony optimization algorithm. Wireless Personal Communications, 82(4), 2135–2153.

    Article  Google Scholar 

  40. Liu, X., & He, D. (2014). Ant colony optimization with greedy migration mechanism for node deployment in wireless sensor networks. Journal of Network and Computer Applications, 39, 310–318.

    Article  Google Scholar 

  41. Liu, X. (2012). Sensor deployment of wireless sensor networks based on ant colony optimization with three classes of ant transitions. IEEE Communications Letters, 16(10), 1604–1607.

    Article  Google Scholar 

  42. Qasim, T., Mujahid, A., Bhatti, N. A., Mushtaq, M., Saleem, K., Mahmood, H., et al. (2018). ACO-Discreet: An efficient node deployment approach in wireless sensor networks. In Information Technology-New Generations (pp. 43–48). Springer.

    Google Scholar 

  43. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  44. Jia, J., Chen, J., Chang, G., & Tan, Z. (2009). Energy efficient coverage control in wireless sensor networks based on multi-objective genetic algorithm. Computers & Mathematics with Applications, 57(11–12), 1756–1766.

    Article  MathSciNet  Google Scholar 

  45. Syarif, A., Benyahia, I., Abouaissa, A., Idoumghar, L., Sari, R. F., Lorenz, P. (2014). Evolutionary multi-objective based approach for wireless sensor network deployment. In 2014 IEEE International Conference on Communications (ICC) (pp. 1831–1836). IEEE.

    Google Scholar 

  46. El-Sherif, M., Fahmy, Y., & Kamal, H. (2018). Lifetime maximization of disjoint wireless sensor networks using multiobjective genetic algorithm. IET Wireless Sensor Systems, 8(5), 200–207.

    Google Scholar 

  47. Wang, J., Ju, C., Gao, Y., Sangaiah, A. K., & Kim, G. J. (2018). A PSO based energy efficient coverage control algorithm for wireless sensor networks. Computers, Materials and Continua, 56(3), 433–446.

    Google Scholar 

  48. Panag, T. S., & Dhillon, J. S. (2018). A novel random transition based PSO algorithm to maximize the lifetime of wireless sensor networks. Wireless Personal Communications, 98(2), 2261–2290.

    Article  Google Scholar 

  49. Rout, M., & Roy, R. (2017). Optimal wireless sensor network information coverage using particle swarm optimization method. International Journal of Electronics Letters, 5(4), 491–499.

    Article  Google Scholar 

  50. Qin, N. N., & Chen, J. L. (2018). An area coverage algorithm for wireless sensor networks based on differential evolution. International Journal of Distributed Sensor Networks, 14(8), 1–11.

    Google Scholar 

  51. Cao, B., Zhao, J., Lv, Z., Liu, X., Kang, X., & Yang, S. (2018). Deployment optimization for 3D industrial wireless sensor networks based on particle swarm optimizers with distributed parallelism. Journal of Network and Computer Applications, 103, 225–238.

    Article  Google Scholar 

  52. Mnasri, S., Nasri, N., van den Bossche, A., & Val, T. (2019). Improved many-objective optimization algorithms for the 3D indoor deployment problem. Arabian Journal for Science and Engineering 1–22.

    Google Scholar 

  53. Gupta, S. K., Kuila, P., & Jana, P. K. (2016). GA based energy efficient and balanced routing in k-connected wireless sensor networks. AISC, 458, 679–686 (Springer).

    Google Scholar 

  54. Gupta, S. K., Kuila, P., Jana, P. K. (2016). Energy efficient routing algorithm for wireless sensor networks: A distributed approach. In Communication and Computing Systems: Proceedings of the International Conference on Communication and Computing Systems (ICCCS 2016) (pp. 207–213). CRC Press, Taylor & Francis Group.

    Google Scholar 

  55. Singh, D., Kuila, P., & Jana, P. K. (2014). A distributed energy efficient and energy balanced routing algorithm for wireless sensor networks. In 3rd ICACCI 2014 (pp. 1657–1663). IEEE Xplore.

    Google Scholar 

  56. Binh, H. T. T., Hanh, N. T., & Dey, N. (2018). Improved cuckoo search and chaotic flower pollination optimization algorithm for maximizing area coverage in wireless sensor networks. Neural Computing and Applications, 30(7), 2305–2317.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratyay Kuila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harizan, S., Kuila, P. (2020). Evolutionary Algorithms for Coverage and Connectivity Problems in Wireless Sensor Networks: A Study. In: Das, S., Samanta, S., Dey, N., Kumar, R. (eds) Design Frameworks for Wireless Networks. Lecture Notes in Networks and Systems, vol 82. Springer, Singapore. https://doi.org/10.1007/978-981-13-9574-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9574-1_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9573-4

  • Online ISBN: 978-981-13-9574-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics