Skip to main content

Virology of SFTSV

  • 353 Accesses

Abstract

At first, the basic structures of the viral genomes of severe fever with thrombocytopenia syndrome virus (SFTSV) and related viruses are shown. Then the structures and functions of structural and nonstructural proteins of SFTSV are discussed. Finally, recent information relating to the basic property of SFTSV, cytopathic effect, plaque formation and low pH-dependent membrane fusion is described.

Keywords

  • Structural protein
  • N
  • GP
  • L
  • RdRp
  • NsS

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-13-9562-8_5
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-981-13-9562-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4
Fig. 5.5
Fig. 5.6
Fig. 5.7
Fig. 5.8
Fig. 5.9

References

  • Adams MJ, Lefkowitz EJ, King AMQ, Harrach B, Harrison RL, Knowles NJ, Kropinski AM, Krupovic M, Kuhn JH, Mushegian AR, Nibert M, Sabanadzovic S, Sanfaçon H, Siddell SG, Simmonds PV, arsani A, Zerbini FM, Gorbalenya AE, Davison AJ (2017) Changes to taxonomy and the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses. Arch Virol 162:2505–2538

    CAS  PubMed  CrossRef  Google Scholar 

  • Billecocq A, Spiegel M, Vialat P, Kohl A, Weber F, Bouloy M, Haller O (2004) NSs protein of Rift Valley fever virus blocks interferon production by inhibiting host gene transcription. J Virol 78(18):9798–9806

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Bouloy M, Janzen C, Vialat P, Khun H, Pavlovic J, Huerre M, Haller O (2001) Genetic evidence for an interferon-antagonistic function of Rift Valley fever virus nonstructural protein NSs. J Virol 75(3):1371–1377

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Brennan B, Li P, Zhang S, Li A, Liang M, Li D, Elliott RM (2015) Reverse genetics system for severe fever with thrombocytopenia syndrome virus. J Virol 89(6):3026–3037

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Brennan B, Rezelj VV, Elliott RM (2017) Mapping of transcription termination within the S segment of SFTS phlebovirus facilitated generation of NSs deletant viruses. J Virol 91(16):e00743-17

    Google Scholar 

  • Bridgen A, Weber F, Fazakerley JK, Elliott RM (2001) Bunyamwera bunyavirus nonstructural protein NSs is a nonessential gene product that contributes to viral pathogenesis. Proc Natl Acad Sci U S A 98(2):664–669

    CAS  CrossRef  Google Scholar 

  • Bruenn JA (2003) A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases. Nucleic Acids Res 31(7):1821–1829

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Calvert AE, Brault AC (2015) Development and characterization of monoclonal antibodies directed against the nucleoprotein of heartland virus. Am J Trop Med Hyg 93(6):1338–1340

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Carnec X, Ermonval M, Kreher F, Flamand M, Bouloy M (2014) Role of the cytosolic tails of Rift Valley fever virus envelope glycoproteins in viral morphogenesis. Virology 448:1–14

    CAS  PubMed  CrossRef  Google Scholar 

  • Chaudhary V, Zhang S, Yuen KS, Li C, Lui PY, Fung SY, Wang PH, Chan CP, Li D, Kok KH, Liang M, Jin DY (2015) Suppression of type I and type III IFN signalling by NSs protein of severe fever with thrombocytopenia syndrome virus through inhibition of STAT1 phosphorylation and activation. J Gen Virol 96(11):3204–3211

    CAS  CrossRef  Google Scholar 

  • Chen X, Ye H, Li S, Jiao B, Wu J, Zeng P, Chen L (2017) Severe fever with thrombocytopenia syndrome virus inhibits exogenous Type I IFN signaling pathway through its NSs in vitro. PLoS One 12(2):e0172744

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Daubney R, Hudson JR, Garnham PC (1931) Enzootic hepatitis or Rift Valley fever. An undescribed virus disease of sheep, cattle and man from East Africa. J Path Bact 34(2):545–579

    CrossRef  Google Scholar 

  • Fukuma A, Fukushi S, Yoshikawa T, Tani H, Taniguchi S, Kurosu T, Egawa K, Suda Y, Singh H, Nomachi T, Gokuden M, Ando K, Kida K, Kan M, Kato N, Yoshikawa A, Kitamoto H, Sato Y, Suzuki T, Hasegawa H, Morikawa S, Shimojima M, Saijo M (2016) Severe fever with thrombocytopenia syndrome virus antigen detection using monoclonal antibodies to the nucleocapsid protein. PLoS Negl Trop Dis 10(4):e0004595

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Guo X, Zhang L, Zhang W, Chi Y, Zeng X, Li X, Qi X, Jin Q, Zhang X, Huang M, Wang H, Chen Y, Bao C, Hu J, Liang S, Bao L, Wu T, Zhou M, Jiao Y (2013) Human antibody neutralizes severe fever with thrombocytopenia syndrome virus, an emerging hemorrhagic fever virus. Clin Vaccine Immunol 20(9):1426–1432

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Halldorsson S, Behrens AJ, Harlos K, Huiskonen JT, Elliott RM, Crispin M, Brennan B, Bowden TA (2016) Structure of a phleboviral envelope glycoprotein reveals a consolidated model of membrane fusion. Proc Natl Acad Sci U S A 113(26):7154–7159

    CAS  CrossRef  Google Scholar 

  • Hobson-Peters J, Warrilow D (2016) Discovery and characterisation of a new insect-specific bunyavirus from Culex mosquitoes captured in northern Australia. Virology 489:269–281

    CAS  PubMed  CrossRef  Google Scholar 

  • Hofmann H, Li X, Zhang X, Liu W, Kuhl A, Kaup F, Soldan SS, Gonzalez-Scarano F, Weber F, He Y, Pohlmann S (2013) Severe fever with thrombocytopenia virus glycoproteins are targeted by neutralizing antibodies and can use DC-SIGN as a receptor for pH-dependent entry into human and animal cell lines. J Virol 87(8):4384–4394

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Huang YT, Zhao L, Wen HL, Yang Y, Yu H, Yu XJ (2016) Neutralizing antibodies to severe fever with thrombocytopenia syndrome virus 4 years after hospitalization, China. Emerg Infect Dis 22(11):1985–1987

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jantti J, Hilden P, Ronka H, Makiranta V, Keranen S, Kuismanen E (1997) Immunocytochemical analysis of Uukuniemi virus budding compartments: role of the intermediate compartment and the Golgi stack in virus maturation. J Virol 71(2):1162–1172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Zeng X, Guo X, Qi X, Zhang X, Shi Z, Zhou M, Bao C, Zhang W, Xu Y, Wang H (2012) Preparation and evaluation of recombinant severe fever with thrombocytopenia syndrome virus nucleocapsid protein for detection of total antibodies in human and animal sera by double-antigen sandwich enzyme-linked immunosorbent assay. J Clin Microbiol 50(2):372–377

    PubMed  CrossRef  Google Scholar 

  • Jiao L, Ouyang S, Liang M, Niu F, Shaw N, Wu W, Ding W, Jin C, Peng Y, Zhu Y, Zhang F, Wang T, Li C, Zuo X, Luan CH, Li D, Liu ZJ (2013) Structure of severe fever with thrombocytopenia syndrome virus nucleocapsid protein in complex with suramin reveals therapeutic potential. J Virol 87(12):6829–6839

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lee H, Kim EJ, Song JY, Choi JS, Lee JY, Cho IS, Shin YK (2016) Development and evaluation of a competitive enzyme-linked immunosorbent assay using a monoclonal antibody for diagnosis of severe fever with thrombocytopenia syndrome virus in bovine sera. J Vet Sci 17(3):307–314

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lundu T, Tsuda Y, Yoshimatsu K, Yoshii K, Arikawa J, Kariwa H (2018) Targeting of severe fever with thrombocytopenia syndrome virus structural proteins to the ERGIC (ER – Golgi intermediate compartment) and Golgi. Biomed Res 39(1):27-38

    Google Scholar 

  • Marklewitz M (2011) Gouleako virus isolated from west African mosquitoes constitutes a proposed novel genus in the family Bunyaviridae. J Virol 85(17):9227–9234

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Min X, Mengji C, Wenwen L, Ren Y, Xueping Z, Xifeng W (2017) Two negative-strand RNA viruses identified in watermelon represent a novel clade in the order bunyavirales. Front Microbiol 8:1514

    CrossRef  Google Scholar 

  • Nishio S, Tsuda Y, Ito R, Shimizu K, Yoshimatsu K, Arikawa J (2017) Establishment of subclones of the severe fever with thrombocytopenia syndrome virus YG1 strain selected using low pH-dependent cell fusion activity. Jpn J Infect Dis 70(4):388–393

    CAS  PubMed  CrossRef  Google Scholar 

  • Novoa RR, Calderita G, Cabezas P, Elliott RM, Risco C (2005) Key Golgi factors for structural and functional maturation of bunyamwera virus. J Virol 79(17):10852–10863

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Overby AK, Pettersson RF, Neve EP (2007a) The glycoprotein cytoplasmic tail of Uukuniemi virus (Bunyaviridae) interacts with ribonucleoproteins and is critical for genome packaging. J Virol 81(7):3198–3205

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Overby AK, Popov VL, Pettersson RF, Neve EP (2007b) The cytoplasmic tails of Uukuniemi Virus (Bunyaviridae) G(N) and G(C) glycoproteins are important for intracellular targeting and the budding of virus-like particles. J Virol 81(20):11381–11391

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Palacios G, Savji N, Travassos da Rosa A, Guzman H, Yu X, Desai A, Rosen GE, Hutchison S, Lipkin WI, Tesh R (2013) Characterization of the Uukuniemi virus group (Phlebovirus: Bunyaviridae): evidence for seven distinct species. J Virol 87(6):3187–3195

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Piper ME, Sorenson DR, Gerrard SR (2011) Efficient cellular release of Rift Valley fever virus requires genomic RNA. PLoS One 6(3):e18070

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Plegge T, Hofmann-Winkler H, Spiegel M, Pohlmann S (2016) Evidence that processing of the severe fever with thrombocytopenia syndrome virus Gn/Gc polyprotein is critical for viral infectivity and requires an internal Gc signal peptide. PLoS One 11(11):e0166013

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Qu B, Qi X, Wu X, Liang M, Li C, Cardona CJ, Xu W, Tang F, Li Z, Wu B, Powell K, Wegner M, Li D, Xing Z (2012) Suppression of the interferon and NF-kappaB responses by severe fever with thrombocytopenia syndrome virus. J Virol 86(16):8388–8401

    Google Scholar 

  • Ramanathan HN, Chung DH, Plane SJ, Sztul E, Chu YK, Guttieri MC, McDowell M, Ali G, Jonsson CB (2007) Dynein-dependent transport of the hantaan virus nucleocapsid protein to the endoplasmic reticulum-Golgi intermediate compartment. J Virol 81(16):8634–8647

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Rezelj VV, Li P, Chaudhary V, Elliott RM, Jin DY, Brennan B (2017) Differential antagonism of human innate immune responses by tick-borne Phlebovirus nonstructural proteins. mSphere 2(3):e00234-17

    Google Scholar 

  • Rusu M, Bonneau R, Holbrook MR, Watowich SJ, Birmanns S, Wriggers W, Freiberg AN (2012) An assembly model of Rift Valley fever virus. Front Microbiol 3:254

    Google Scholar 

  • Salanueva IJ, Novoa RR, Cabezas P, Lopez-Iglesias C, Carrascosa JL, Elliott RM, Risco C (2003) Polymorphism and structural maturation of bunyamwera virus in Golgi and post-Golgi compartments. J Virol 77(2):1368–1381

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sun Y, Qi Y, Liu C, Gao W, Chen P, Fu L, Peng B, Wang H, Jing Z, Zhong G, Li W (2014) Nonmuscle myosin heavy chain IIA is a critical factor contributing to the efficiency of early infection of severe fever with thrombocytopenia syndrome virus. J Virol 88(1):237–248

    PubMed  CrossRef  Google Scholar 

  • Takahashi T, Maeda K, Suzuki T, Ishido A, Shigeoka T, Tominaga T, Kamei T, Honda M, Ninomiya D, Sakai T, Senba T, Kaneyuki S, Sakaguchi S, Satoh A, Hosokawa T, Kawabe Y, Kurihara S, Izumikawa K, Kohno S, Azuma T, Suemori K, Yasukawa M, Mizutani T, Omatsu T, Katayama Y, Miyahara M, Ijuin M, Doi K, Okuda M, Umeki K, Saito T, Fukushima K, Nakajima K, Yoshikawa T, Tani H, Fukushi S, Fukuma A, Ogata M, Shimojima M, Nakajima N, Nagata N, Katano H, Fukumoto H, Sato Y, Hasegawa H, Yamagishi T, Oishi K, Kurane I, Morikawa S, Saijo M (2014) The first identification and retrospective study of severe fever with thrombocytopenia syndrome in Japan. J Infect Dis 209(6):816–827

    PubMed  CrossRef  Google Scholar 

  • Tani H (2014) Analyses of entry mechanisms of novel emerging viruses using pseudotype VSV system. Trop Med Health 42(2):Suppl):71–Suppl):82

    CrossRef  Google Scholar 

  • Taniguchi S, Fukuma A, Tani H, Fukushi S, Saijo M, Shimojima M (2017) A neutralization assay with a severe fever with thrombocytopenia syndrome virus strain that makes plaques in inoculated cells. J Virol Methods 244:4–10

    CAS  PubMed  CrossRef  Google Scholar 

  • Terasaki K, Won S, Makino S (2013) The C-terminal region of Rift Valley fever virus NSm protein targets the protein to the mitochondrial outer membrane and exerts antiapoptotic function. J Virol 87(1):676–682

    PubMed  CrossRef  Google Scholar 

  • Tsuda Y, Igarashi M, Ito R, Nishio S, Shimizu K, Yoshimatsu K, Arikawa J (2017) The amino acid at position 624 in the glycoprotein of SFTSV (severe fever with thrombocytopenia virus) plays a critical role in low-pH-dependent cell fusion activity. Biomed Res 38(2):89–97

    Google Scholar 

  • Vialat P, Billecocq A, Kohl A, Bouloy M (2000) The S segment of Rift valley fever phlebovirus (Bunyaviridae) carries determinants for attenuation and virulence in mice. J Virol 74(3):1538–1543

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wang X, Zhang Q, Hao F, Gao X, Wu W, Liang M, Liao Z, Luo S, Xu W, Li D, Wang S (2014) Development of a colloidal gold kit for the diagnosis of severe fever with thrombocytopenia syndrome virus infection. Biomed Res Int 2014:1–6

    Google Scholar 

  • Wu X, Qi X, Liang M, Li C, Cardona CJ, Li D, Xing Z (2014) Roles of viroplasm-like structures formed by nonstructural protein NSs in infection with severe fever with thrombocytopenia syndrome virus. FASEB J 28(6):2504–2516

    CAS  PubMed  CrossRef  Google Scholar 

  • Wu Y, Zhu Y, Gao F, Jiao Y, Oladejo BO, Chai Y, Bi Y, Lu S, Dong M, Zhang C, Huang G, Wong G, Li N, Zhang Y, Li Y, Feng WH, Shi Y, Liang M, Zhang R, Qi J, Gao GF (2017) Structures of phlebovirus glycoprotein Gn and identification of a neutralizing antibody epitope. Proc Natl Acad Sci U S A 114(36):E7564–E7573

    CAS  CrossRef  Google Scholar 

  • Yoshikawa T, Shimojima M, Fukushi S, Tani H, Fukuma A, Taniguchi S, Singh H, Suda Y, Shirabe K, Toda S, Shimazu Y, Nomachi T, Gokuden M, Morimitsu T, Ando K, Yoshikawa A, Kan M, Uramoto M, Osako H, Kida K, Takimoto H, Kitamoto H, Terasoma F, Honda A, Maeda K, Takahashi T, Yamagishi T, Oishi K, Morikawa S, Saijo M (2015) Phylogenetic and geographic relationships of severe fever with thrombocytopenia syndrome virus in China, South Korea, and Japan. J Infect Dis 212(6):889–898

    CAS  CrossRef  Google Scholar 

  • Yu L, Zhang L, Sun L, Lu J, Wu W, Li C, Zhang Q, Zhang F, Jin C, Wang X, Bi Z, Li D, Liang M (2012) Critical epitopes in the nucleocapsid protein of SFTS virus recognized by a panel of SFTS patients derived human monoclonal antibodies. PLoS One 7(6):e38291

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yu F, Du Y, Huang X, Ma H, Xu B, Adungo F, Hayasaka D, Buerano CC, Morita K (2015) Application of recombinant severe fever with thrombocytopenia syndrome virus nucleocapsid protein for the detection of SFTSV-specific human IgG and IgM antibodies by indirect ELISA. Virol J 12:117

    Google Scholar 

  • Zhang W, Zeng X, Zhang L, Peng H, Jiao Y, Zeng J, Treutlein HR (2013) Computational identification of epitopes in the glycoproteins of novel bunyavirus (SFTS virus) recognized by a human monoclonal antibody (MAb 4-5). J Comput Aided Mol Des 27(6):539–550

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhang S, Zheng B, Wang T, Li A, Wan J, Qu J, Li CH, Li D, Liang M (2017) NSs protein of severe fever with thrombocytopenia syndrome virus suppresses interferon production through different mechanism than Rift Valley fever virus. Acta Virol 61(3):289–298

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhou H, Sun Y, Wang Y, Liu M, Liu C, Wang W, Liu X, Li L, Deng F, Wang H, Guo Y, Lou Z (2013) The nucleoprotein of severe fever with thrombocytopenia syndrome virus processes a stable hexameric ring to facilitate RNA encapsidation. Protein Cell 4(6):445–455

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumiko Yoshimatsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Yoshimatsu, K. (2019). Virology of SFTSV. In: Saijo, M. (eds) Severe Fever with Thrombocytopenia Syndrome. Springer, Singapore. https://doi.org/10.1007/978-981-13-9562-8_5

Download citation