Skip to main content

Associative Memory Cells in Memory Trace

  • Chapter
  • First Online:
Associative Memory Cells: Basic Units of Memory Trace
  • 599 Accesses

Abstract

Associative memory is characterized as the integrative storages and the reciprocal retrievals of associated signals after their joint acquisitions. Basic units in memory traces should be morphological and functional identities to work for memory-relevant processes. Beyond the concepts of memory traces, engrams, cell assemblies, and neural plasticity, associative memory cells have been functionally and structurally identified, which encode the integrative storage and reciprocal retrieval of associated signals as well as receive synapse innervation from coactivated brain areas. Associative memory cells are identified as primary associative memory cells in sensory cortices to memorize exogenous signals and secondary associative memory cells in sensory downstream brain areas, such as the prefrontal cortex, amygdala, and hippocampus, to memorize endogenous signals generated from cognitive events and emotional reactions. Based on experimental data, these associative memory cells have the following characters. They receive synapse innervations from the coactivated brain areas in a reciprocal manner. They are able to encode the associated signals acquired in associative learning and generated in integrative cognitions. Their encoded signals and received synapse innervations come from cross-modal and intramodal sources. Their axons innervate their downstream brain regions in convergent and divergent manners. Associative memory cells and their mediated memory formation are influenced by the chain reaction including neuronal activation, epigenetic process, and the expressions of genes and proteins in relevance to axon prolongation and synapse formation. Working principles of associative memory cells are based on their reception of synapse innervations from multiple sources and mutual synaptic innervations by the coactivations, as well as neuronal encoding capability and synaptic transmission efficacy. Moreover, their functional states are modulated by the arousal system that release monoamine and acetylcholine as well as by hormones. These associative memory cells constitute the foundations of memory-related physiological and psychological processes as well as memory deficits in pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kandel ER, Pittenger C. The past, the future and the biology of memory storage. Philos Trans R Soc Lond Ser B Biol Sci. 1999;354(1392):2027–52.

    Article  CAS  Google Scholar 

  2. Suzuki WA. Associative learning signals in the brain. Prog Brain Res. 2008;169:305–20.

    Article  PubMed  Google Scholar 

  3. Wang D, et al. Neurons in the barrel cortex turn into processing whisker and odor signals: a cellular mechanism for the storage and retrieval of associative signals. Front Cell Neurosci. 2015;9:320.

    PubMed  PubMed Central  Google Scholar 

  4. Wasserman EA, Miller RR. What’s elementary about associative learning? Annu Rev Psychol. 1997;48:573–607.

    Article  CAS  PubMed  Google Scholar 

  5. Wang J-H. Searching basic units of memory traces: associative memory cells. F1000Research. 2019;8(457):1–28.

    Google Scholar 

  6. Wang JH, Cui S. Associative memory cells: formation, function and perspective. F1000Res. 2017;6:283.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang JH, Cui S. Associative memory cells and their working principle in the brain. F1000Res. 2018;7:108.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu Y, et al. Piriform cortical glutamatergic and GABAergic neurons express coordinated plasticity for whisker-induced odor recall. Oncotarget. 2017;8(56):95719–40.

    PubMed  PubMed Central  Google Scholar 

  9. Yan F, et al. Coordinated plasticity between barrel cortical glutamatergic and GABAergic neurons during associative memory. Neural Plast. 2016;2016(ID5648390):1–20.

    CAS  Google Scholar 

  10. Wang JH, et al. Upregulation of glutamatergic receptor-channels is associated with cross-modal reflexes encoded in barrel cortex and piriform cortex. Biophys J. 2014;106(2):supplement 191a.

    Article  Google Scholar 

  11. Feng J, et al. Barrel cortical neuron integrates triple associated signals for their memory through receiving epigenetic-mediated new synapse innervations. Cereb Cortex. 2017;27(12):5858–71.

    Article  PubMed  Google Scholar 

  12. Lei Z, et al. Synapse innervation and associative memory cell are recruited for integrative storage of whisker and odor signals in the barrel cortex through miRNA-mediated processes. Front Cell Neurosci. 2017;11(316):1–11.

    Google Scholar 

  13. Wang J-H, et al. Prefrontal cortical neurons are recruited as secondary associative memory cells for associative memory and cognition. Biophys J. 2018;114(3):155a.

    Article  Google Scholar 

  14. Wang JH, et al. Secondary associative memory cells and their plasticity in the prefrontal cortex. Biophys J. 2019;116(3):427a.

    Article  Google Scholar 

  15. Hebb DO. The organization of behavior, a neuropsychological theory. New York: Wiley; 1949.

    Google Scholar 

  16. Hebb DO. Animal and physiological psychology. Annu Rev Psychol. 1950;1:173–88.

    Article  CAS  PubMed  Google Scholar 

  17. Poo MM, et al. What is memory? The present state of the engram. BMC Biol. 2016;14:40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kandel ER, Dudai Y, Mayford MR. The molecular and systems biology of memory. Cell. 2014;157(1):163–86.

    Article  CAS  PubMed  Google Scholar 

  19. Semon RW. In: Semon RW, editor. Mnemic psychology. London: Allen, Unwinis; 1923.

    Google Scholar 

  20. Tonegawa S, et al. Memory engram storage and retrieval. Curr Opin Neurobiol. 2015;35:101–9.

    Article  CAS  PubMed  Google Scholar 

  21. Black J, Greenough W. Developmental approaches to the memory process. In: Martinez J, Kesner R, editors. Learning and memory. San Diego: Academic; 1991. p. 61–91.

    Chapter  Google Scholar 

  22. Brown M, Keynes R, Lumsden A. Development of cerebral cortex and cerebellar cortex. In: Brown MEA, editor. The development of brain. New York: Oxford University Press Inc; 2001. p. 169–93.

    Google Scholar 

  23. Chang H, et al. The protocadherin 17 gene affects cognition, personality, amygdala structure and function, synapse development and risk of major mood disorders. Mol Psychiatry. 2017;231:1–13.

    Google Scholar 

  24. Dajani DR, Uddin LQ. Demystifying cognitive flexibility: implications for clinical and developmental neuroscience. Trends Neurosci. 2015;38(9):571–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dumas TC. Developmental regulation of cognitive abilities: modified composition of a molecular switch turns on associative learning. Prog Neurobiol. 2005;76(3):189–211.

    Article  CAS  PubMed  Google Scholar 

  26. Cohen Kadosh R, Walsh V. Cognitive neuroscience: rewired or crosswired brains? Curr Biol. 2006;16(22):R962–3.

    Article  CAS  PubMed  Google Scholar 

  27. Chen N, et al. The refractory periods and threshold potentials of sequential spikes measured by whole-cell recordings. Biochem Biophys Res Commun. 2006;340:151–7.

    Article  CAS  PubMed  Google Scholar 

  28. Chen N, et al. Sodium channel-mediated intrinsic mechanisms underlying the differences of spike programming among GABAergic neurons. Biochem Biophys Res Commun. 2006;346:281–7.

    Article  CAS  PubMed  Google Scholar 

  29. Chen N, Chen X, Wang J-H. Homeostasis established by coordination of subcellular compartment plasticity improves spike encoding. J Cell Sci. 2008;121(17):2961–71.

    Article  CAS  PubMed  Google Scholar 

  30. Hodgkin AL, Huxley AF. Resting and action potentials in single nerve fibres. J Physiol. 1945;104(2):176–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952;117(4):500–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shepherd GM. Synaptic potentials and synaptic integration. In: Shepherd GM, editor. Neurobiology. New York: Oxford University Press; 1998. p. 97–117.

    Google Scholar 

  33. Stevens CF, Wang Y-Y. Facilitation and depression at single central synapses. Neuron. 1995;14:795–802.

    Article  CAS  PubMed  Google Scholar 

  34. Wang JH, et al. The gain and fidelity of transmission patterns at cortical excitatory unitary synapses improve spike encoding. J Cell Sci. 2008;121(17):2951–60.

    Article  CAS  PubMed  Google Scholar 

  35. Kandel ER. Nerve cells and behavior. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science. 4th ed. New York: McGraw-Hill; 2000. p. 19–35.

    Google Scholar 

  36. Thompson RF. In search of memory traces. Annu Rev Psychol. 2005;56:1–23.

    Article  PubMed  Google Scholar 

  37. Thompson RF. An essential memory trace found. Behav Neurosci. 2013;127(5):669–75.

    Article  PubMed  Google Scholar 

  38. Reijmers LG, et al. Localization of a stable neural correlate of associative memory. Science. 2007;317(5842):1230–3.

    Article  CAS  PubMed  Google Scholar 

  39. Tayler KK, et al. Reactivation of neural ensembles during the retrieval of recent and remote memory. Curr Biol. 2013;23(2):99–106.

    Article  CAS  PubMed  Google Scholar 

  40. Link W, et al. Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc Natl Acad Sci U S A. 1995;92(12):5734–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morgan JI, Curran T. Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci. 1989;12(11):459–62.

    Article  CAS  PubMed  Google Scholar 

  42. Kiessling M, Gass P. Immediate early gene expression in experimental epilepsy. Brain Pathol. 1993;3(4):381–93.

    Article  CAS  PubMed  Google Scholar 

  43. Meldrum BS. Concept of activity-induced cell death in epilepsy: historical and contemporary perspectives. Prog Brain Res. 2002;135:3–11.

    Article  CAS  PubMed  Google Scholar 

  44. Wang X, et al. Persistent hyperactivity of hippocampal dentate interneurons after a silent period in the rat pilocarpine model of epilepsy. Front Cell Neurosci. 2016;10:94.

    PubMed  PubMed Central  Google Scholar 

  45. Simonato M, et al. Differential expression of immediate early genes in the hippocampus in the kindling model of epilepsy. Brain Res Mol Brain Res. 1991;11(2):115–24.

    Article  CAS  PubMed  Google Scholar 

  46. Abe H, Nowak TS Jr. Induced hippocampal neuron protection in an optimized gerbil ischemia model: insult thresholds for tolerance induction and altered gene expression defined by ischemic depolarization. J Cereb Blood Flow Metab. 2004;24(1):84–97.

    Article  CAS  PubMed  Google Scholar 

  47. Bokesch PM, et al. Dextromethorphan inhibits ischemia-induced c-fos expression and delayed neuronal death in hippocampal neurons. Anesthesiology. 1994;81(2):470–7.

    Article  CAS  PubMed  Google Scholar 

  48. Kiessling M, et al. Differential transcription and translation of immediate early genes in the gerbil hippocampus after transient global ischemia. J Cereb Blood Flow Metab. 1993;13(6):914–24.

    Article  CAS  PubMed  Google Scholar 

  49. Carr MF, Jadhav SP, Frank LM. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat Neurosci. 2011;14(2):147–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Harris KD, et al. Organization of cell assemblies in the hippocampus. Nature. 2003;424(6948):552–6.

    Article  CAS  PubMed  Google Scholar 

  51. Ji D, Wilson MA. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci. 2007;10(1):100–7.

    Article  CAS  PubMed  Google Scholar 

  52. Jadhav SP, et al. Awake hippocampal sharp-wave ripples support spatial memory. Science. 2012;336(6087):1454–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kay K, et al. A hippocampal network for spatial coding during immobility and sleep. Nature. 2016;531(7593):185–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kudrimoti HS, Barnes CA, McNaughton BL. Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J Neurosci. 1999;19(10):4090–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McNaughton BL, Barnes CA, O’Keefe J. The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Exp Brain Res. 1983;52(1):41–9.

    Article  CAS  PubMed  Google Scholar 

  56. Sirota A, et al. Communication between neocortex and hippocampus during sleep in rodents. Proc Natl Acad Sci U S A. 2003;100(4):2065–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Skaggs WE, McNaughton BL. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science. 1996;271(5257):1870–3.

    Article  CAS  PubMed  Google Scholar 

  58. Wilson MA, McNaughton BL. Dynamics of the hippocampal ensemble code for space. Science. 1993;261(5124):1055–8.

    Article  CAS  PubMed  Google Scholar 

  59. Wilson MA, McNaughton BL. Reactivation of hippocampal ensemble memories during sleep. Science. 1994;265(5172):676–9.

    Article  CAS  PubMed  Google Scholar 

  60. Wirth S, et al. Single neurons in the monkey hippocampus and learning of new associations. Science. 2003;300(5625):1578–81.

    Article  CAS  PubMed  Google Scholar 

  61. Yokose J, et al. Overlapping memory trace indispensable for linking, but not recalling, individual memories. Science. 2017;355(6323):398–403.

    Article  CAS  PubMed  Google Scholar 

  62. Yu JY, et al. Specific hippocampal representations are linked to generalized cortical representations in memory. Nat Commun. 2018;9(1):2209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Zhao J, Wang D, Wang J-H. Barrel cortical neurons and astrocytes coordinately respond to an increased whisker stimulus frequency. Mol Brain. 2012;5(12):1–10.

    CAS  Google Scholar 

  64. Nikolenko V, Poskanzer KE, Yuste R. Two-photon photostimulation and imaging of neural circuits. Nat Methods. 2007;4(11):943–50.

    Article  CAS  PubMed  Google Scholar 

  65. Stosiek C, et al. In vivo two-photon calcium imaging of neural networks. Proc Natl Acad Sci U S A. 2003;100(12):7319–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang KH, et al. In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex. Cell. 2006;126(2):389–402.

    Article  CAS  PubMed  Google Scholar 

  67. Feng J, et al. Cell-specific plasticity associated with integrative memory of triple sensory signals in the barrel cortex. Oncotarget. 2018;9(57):30962–78.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhang G, et al. Upregulation of excitatory neurons and downregulation of inhibitory neurons in barrel cortex are associated with loss of whisker inputs. Mol Brain. 2013;6(1):2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gao Z, et al. Associations of unilateral whisker and olfactory signals induce synapse formation and memory cell recruitment in bilateral barrel cortices: cellular mechanism for unilateral training toward bilateral memory. Front Cell Neurosci. 2016;10(285):1–16.

    Google Scholar 

  70. Paxinos G, Watson C. The mouse brain: in stereotaxic coordinates. In: Paxinos G, Watson C, editors. The rat brain: in stereotaxic coordinates. London: Elsevier Academic Press; 2005.

    Google Scholar 

  71. Hama H, et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat Neurosci. 2011;14(11):1481–8.

    Article  CAS  PubMed  Google Scholar 

  72. Yan F, et al. Coordinated plasticity between barrel cortical glutamatergic and GABAergic neurons during associative memory. Neural Plast. 2016;2016(ID 5648390):1–15.

    CAS  Google Scholar 

  73. Bliss T, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol Lond. 1973;232:331–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Debanne D, Poo MM. Spike-timing dependent plasticity beyond synapse – pre- and post-synaptic plasticity of intrinsic neuronal excitability. Front Synaptic Neurosci. 2010;2:21.

    PubMed  PubMed Central  Google Scholar 

  75. Stanton PK, Sejnowski TJ. Associative long-term depression in the hippocampus induced by hebbian covariance. Nature. 1989;339(6221):215–8.

    Article  CAS  PubMed  Google Scholar 

  76. Aizenmann C, Linden DJ. Rapid, synaptically driven increases in the intrinsic excitability of cerebellar nuclear neurons. Nat Neurosci. 2000;3:109–11.

    Article  Google Scholar 

  77. Daoudal D, Debanne D. Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learn Mem. 2003;10:456–65.

    Article  PubMed  Google Scholar 

  78. Campanac E, Debanne D. Plasticity of neuronal excitability: Hebbian rules beyond the synapse. Arch Ital Biol. 2007;145(3–4):277–87.

    CAS  PubMed  Google Scholar 

  79. Sourdet V, et al. Long-term enhancement of neuronal excitability and temporal fidelity mediated by metabotropic glutamate receptor subtype 5. J Neurosci. 2003;23(32):10238–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang M, et al. Calcium signal-dependent plasticity of neuronal excitability developed postnatally. J Neurobiol. 2004;61:277–87.

    Article  CAS  PubMed  Google Scholar 

  81. Banerjee SB, et al. Perineuronal nets in the adult sensory cortex are necessary for fear learning. Neuron. 2017;95(1):169–179 e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Doucette W, et al. Associative cortex features in the first olfactory brain relay station. Neuron. 2011;69(6):1176–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Khodagholy D, Gelinas JN, Buzsaki G. Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus. Science. 2017;358(6361):369–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li H, et al. Experience-dependent modification of a central amygdala fear circuit. Nat Neurosci. 2013;16(3):332–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu X, et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature. 2012;484(7394):381–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Raymond JL, Lisberger SG, Mauk MD. The cerebellum: a neuronal learning mechacine? Science. 1996;272:1126–30.

    Article  CAS  PubMed  Google Scholar 

  87. Otis JM, et al. Prefrontal cortex output circuits guide reward seeking through divergent cue encoding. Nature. 2017;543:103–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pape HC, Pare D. Plastic synaptic networks of the amygdala for the acquisition, expression and extinction of conditioned fear. Physiol Rev. 2010;90(2):419–63.

    Article  CAS  PubMed  Google Scholar 

  89. Timmann D, et al. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex. 2010;46(7):845–57.

    Article  CAS  PubMed  Google Scholar 

  90. Weinberger NM. Specific long-term memory traces in primary auditory cortex. Nat Rev Neurosci. 2004;5:279–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xu W, Sudhof TC. A neural circuit for memory specificity and generalization. Science. 2013;339(6125):1290–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Reder LM, Park H, Kieffaber PD. Memory systems do not divide on consciousness: reinterpreting memory in terms of activation and binding. Psychol Bull. 2009;135(1):23–49.

    Article  PubMed  PubMed Central  Google Scholar 

  93. McGaugh JL. Time-dependent processes in memory storage. Science. 1966;153(3742):1351–8.

    Article  CAS  PubMed  Google Scholar 

  94. McLaughlin B. “Intentional” and “incidental” learning in human subjects: the role of instructions to learn and motivation. Psychol Bull. 1965;63:359–76.

    Article  CAS  PubMed  Google Scholar 

  95. Squire LR. Declarative and nondeclarative memory: multiple brain systems supporting learning and memory. J Cogn Neurosci. 1992;4(3):232–43.

    Article  CAS  PubMed  Google Scholar 

  96. Squire LR, Knowlton B, Musen G. The structure and organization of memory. Annu Rev Psychol. 1993;44:453–95.

    Article  CAS  PubMed  Google Scholar 

  97. Adler LL, Berkowitz PH. Influencing associative thinking and imagery in emotionally disturbed children. Psychol Rep. 1976;39(1):183–8.

    Article  CAS  PubMed  Google Scholar 

  98. Gordon R, Silverstein ML, Harrow M. Associative thinking in schizophrenia: a contextualist approach. J Clin Psychol. 1982;38(4):684–96.

    Article  CAS  PubMed  Google Scholar 

  99. Glassman RB. A working memory “theory of relativity”: elasticity in temporal, spatial, and modality dimensions conserves item capacity in radial maze, verbal tasks, and other cognition. Brain Res Bull. 1999;48(5):475–89.

    Article  CAS  PubMed  Google Scholar 

  100. Martins J, Mendes RV. Neural networks and logical reasoning systems: a translation table. Int J Neural Syst. 2001;11(2):179–86.

    CAS  PubMed  Google Scholar 

  101. Procyk E, Joseph JP. Problem solving and logical reasoning in the macaque monkey. Behav Brain Res. 1996;82(1):67–78.

    Article  CAS  PubMed  Google Scholar 

  102. Ramsey NF, et al. Excessive recruitment of neural systems subserving logical reasoning in schizophrenia. Brain. 2002;125(Pt 8):1793–807.

    Article  CAS  PubMed  Google Scholar 

  103. Wang J-H, et al. Neurons in barrel cortex turn into processing whisker and odor signals: a novel form of associative learning. Soc Neurosci. 2013;653(14):WW11.

    Google Scholar 

  104. Wang J-H, et al. Both glutamatergic and Gabaergic neurons are recruited to be associative memory cells. Biophys J. 2016;110(3):supplement 481a.

    Article  Google Scholar 

  105. Zhang F, et al. mGluR1,5 activation improves network asynchrony and GABAergic synapse attenuation in the amygdala: implication for anxiety-like behavior in DBA/2 mice. Mol Brain. 2012;5(1):20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Guo R, et al. Associative memory extinction is accompanied by decayed plasticity at motor cortical neurons and persistent plasticity at sensory cortical neurons. Front Cell Neurosci. 2017;11(168):1–12.

    CAS  Google Scholar 

  107. Liu Y, et al. Activity strengths of cortical glutamatergic and GABAergic neurons are correlated with transgenerational inheritance of learning ability. Oncotarget. 2017;8(68):112401–16.

    PubMed  PubMed Central  Google Scholar 

  108. Zhao X, et al. Coordinated plasticity among glutamatergic and GABAergic neurons and synapses in the barrel cortex is correlated to learning efficiency. Front Cell Neurosci. 2017;11(221):1–12.

    Google Scholar 

  109. Saneyoshi T, Fortin DA, Soderling TR. Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways. Curr Opin Neurobiol. 2009;20(1):108–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Spitzer NC. Activity-dependent neuronal differentiation prior to synapse formation: the functions of calcium transients. J Physiol Paris. 2002;96(1–2):73–80.

    Article  CAS  PubMed  Google Scholar 

  111. Ueda H, et al. Distinct roles of cytoskeletal components in immunological synapse formation and directed secretion. J Immunol. 2015;195(9):4117–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tagawa Y, Hirano T. Activity-dependent callosal axon projections in neonatal mouse cerebral cortex. Neural Plast. 2012;2012:797295.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Albright TD. On the perception of probable things: neural substrates of associative memory, imagery, and perception. Neuron. 2012;74(2):227–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yang Z, et al. Functional compatibility between Purkinje cell axon branches and their target neurons in the cerebellum. Oncotarget. 2017;8(42):72424–37.

    PubMed  PubMed Central  Google Scholar 

  115. Yu J, et al. Quantal glutamate release is essential for reliable neuronal encodings in cerebral networks. PLoS One. 2011;6(9):e25219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yu J, Qian H, Wang JH. Upregulation of transmitter release probability improves a conversion of synaptic analogue signals into neuronal digital spikes. Mol Brain. 2012;5(1):26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cai DJ, et al. A shared neural ensemble links distinct contextual memories encoded close in time. Nature. 2016;534(7605):115–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Naya Y, Yoshida M, Miyashita Y. Forward processing of long-term associative memory in monkey inferotemporal cortex. J Neurosci. 2003;23(7):2861–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Takehara-Nishiuchi K, McNaughton BL. Spontaneous changes of neocortical code for associative memory during consolidation. Science. 2008;322(5903):960–3.

    Article  CAS  PubMed  Google Scholar 

  120. Viskontas IV. Advances in memory research: single-neuron recordings from the human medial temporal lobe aid our understanding of declarative memory. Curr Opin Neurol. 2008;21(6):662–8.

    Article  PubMed  Google Scholar 

  121. Wang J-H, Guo R, Wei Z. Associative memory extinction is accompanied by decays of associative memory cells and their plasticity at motor cortex but not sensory cortex. Soc Neurosci. 2017;81(09):10385.

    Google Scholar 

  122. Milo R. What is the total number of protein molecules per cell volume? A call to rethink some published values. BioEssays. 2013;35(12):1050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Grewe BF, et al. Neural ensemble dynamics underlying a long-term associative memory. Nature. 2017;543(7647):670–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Xu C, et al. Distinct hippocampal pathways mediate dissociable roles of context in memory retrieval. Cell. 2016;167(4):961–972 e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Baldi E, Bucherelli C. Brain sites involved in fear memory reconsolidation and extinction of rodents. Neurosci Biobehav Rev. 2015;53:160–90.

    Article  PubMed  Google Scholar 

  126. Okuyama T, et al. Ventral CA1 neurons store social memory. Science. 2016;353(6307):1536–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kitamura T, et al. Engrams and circuits crucial for systems consolidation of a memory. Science. 2017;356(6333):73–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hubner C, et al. Ex vivo dissection of optogenetically activated mPFC and hippocampal inputs to neurons in the basolateral amygdala: implications for fear and emotional memory. Front Behav Neurosci. 2014;8:64.

    PubMed  PubMed Central  Google Scholar 

  129. Zhao J, Wang D, Wang JH. Barrel cortical neurons and astrocytes coordinately respond to an increased whisker stimulus frequency. Mol Brain. 2012;5:12.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, JH. (2019). Associative Memory Cells in Memory Trace. In: Associative Memory Cells: Basic Units of Memory Trace. Springer, Singapore. https://doi.org/10.1007/978-981-13-9501-7_5

Download citation

Publish with us

Policies and ethics