Identification of Non-stationary and Non-linear Drying Processes

  • Piotr WolszczakEmail author
  • Waldemar Samociuk
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 228)


This chapter discusses a problem of control of a non-stationary and a non-linear drying process of food raw materials, especially yeast. Industrial yeast drying is a non-stationary and a non-linear process with a transport delay. In this work the identification of the yeast drying process was presented. Models for different time intervals of the closed control system were developed. Changes in the model parameters (non-stationarity) caused deterioration in the stability reserve. The developed models will be used to synthesize the control system in the future.


Food drying process Robust control Nonlinear identification 


  1. 1.
    G. Battistelli, D. Mari, D. Selvi, P. Tesi, Direct control design via controller unfalsification. Int. J. Robust Nonlinear Control 28(12), 3694–3712 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    D. Bayrock, W.M. Ingledew, Mechanism of viability loss during fluidized bed drying of baker’s yeast. Food Res. Int. 30(6), 417–425 (1997). Scholar
  3. 3.
    T. Borowy, Everything about yeast (in Polish). Mistrz branży (2014).
  4. 4.
    R. Cechowicz, P. Staczek, Computer supervision of the group of compressors connected in parallel. Maint. Reliab. 16(2), 198–202 (2014)Google Scholar
  5. 5.
    K. Charoensopharat, P. Thanonkeo, S. Thanonkeo, M. Yamada, Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus using consolidated bioprocessing. Antonie Leeuwenhoek 108(1), 173–190 (2015). Scholar
  6. 6.
    E. Gamero-Sandemetrio, L. Payá-Tormo, R. Gómez-Pastor, A. Aranda, E. Matallana, Non-canonical regulation of glutathione and trehalose biosynthesis characterizes non-Saccharomyces wine yeasts with poor performance in active dry yeast production. Microb. Cell 5(4), 184–197 (2018)CrossRefGoogle Scholar
  7. 7.
    C.E. Garcia, M. Morari, Internal model control. A unifying review and some new results. Ind. Eng. Chem. Process. Des. Dev. 21, 308–323 (1982)CrossRefGoogle Scholar
  8. 8.
    C.E. Garcia, M. Morari, Internal model control. 2. Design procedure for multivariable systems. Ind. Eng. Chem. Process. Des. Dev. 24, 472–484 (1985)CrossRefGoogle Scholar
  9. 9.
    P. Gervais, I. Maranon, Effect of the kinetics of temperature variation on Saccharomyces cerevisiae viability and permeability. Biochem. Biophys. Acta 1235(1), 52–56 (1995)CrossRefGoogle Scholar
  10. 10.
    P. Harris, M. Arafa, G. Litak, C.R. Bowen, J. Iwaniec, Output response identification in a multistable system for piezoelectric energy harvesting. Eur. Phys. J. B 90(1), 1–11 (2017)CrossRefGoogle Scholar
  11. 11.
    H. Hjalmarsson, From experiment design to closed-loop control. Automatica 41, 393–438 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    D.M. Jenkins, C.D. Powell, T. Fischborn, K.A. Smart, Rehydration of active dry brewing yeast and its effect on cell viability. J. Inst. Brew. 117(3), 377–382 (2011)CrossRefGoogle Scholar
  13. 13.
    A. Kamińska-Dwórznicka, A. Skoniecka, The influence of drying methods, parameters and the way of storage on the activity of bakery yeasts (in Polish). Zeszyty Problemowe Postępów Nauk Rolniczych 573, 35–42 (2013)Google Scholar
  14. 14.
    T. Kudra, C. Strumiłło, Thermal processing of biomaterials. Gordon and Breach Science. OPA Amsterdam (1998)Google Scholar
  15. 15.
    S.B. Lee, W.S. Choi, H.J. Jo, S.H. Yeo, H.D. Park, Optimization of air-blast drying process for manufacturing Saccharomyces cerevisiae and non-Saccharomyces yeast as industrial wine starters. AMB Express 6(1), 105 (2016)CrossRefGoogle Scholar
  16. 16.
    G. Litak, R. Rusinek, Identification of turning and milling processes by stochastic Langevin equations, in 4th IEEE International Conference on Nonlinear Science and Complexity (2012), pp. 41–44Google Scholar
  17. 17.
    L. Ljung, System identification: theory for the user, 2nd edn. (Prentice Hall PTR, Upper Saddle River, 1999).
  18. 18.
    A. Martynenko, Computer vision for real-time control in drying. Food Eng. Rev. 9(2), 91–111 (2017). Scholar
  19. 19.
    F.I. Mensonides, S. Brul, K.J. Hellingwerf, B.M. Bakker, M.J. Teixeira de Mattos, A kinetic model of catabolic adaptation and protein reprofiling in Saccharomyces cerevisiae during temperature shifts. FEBS J. 281(3), 825–841 (2014)CrossRefGoogle Scholar
  20. 20.
    D. Muhammad, Z. Ahmad, N. Aziz, Implementation of internal model control (IMC) in continuous distillation column, in Proceedings of the 5th International Symposium on Design, Operation and Control of Chemical Processes (2010), pp. 812–821Google Scholar
  21. 21.
    M. Pasławska, Influence of the fountain drying temperature on the dewatering kinetics and yeast viability (in Polish). Inżynieria Rolnicza 5(103), 161–166 (2008)Google Scholar
  22. 22.
    W. Samociuk, Z. Krzysiak, M. Szmigielski, J. Zarajczyk, Z. Stropek, K. Gołacki, G. Bartnik, A. Skic, A. Nieoczym, Modernization of the control system to reduce a risk of severe accidents during non-pressurized ammonia storage (in Polish). Przemysł Chemiczny 95(5), 1000–1003 (2016). Scholar
  23. 23.
    W. Samociuk, A. Wyciszkiewicz, K. Gołacki, T. Otto, Risk of catastrophic failure of the reactor for urea synthesis (in Polish). Przemysł Chemiczny 96(8), 1763–1766 (2017). Scholar
  24. 24.
    A. Techaparin, P. Thanonkeo, P. Klanrit, High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion. Braz. J. Microbiol. 48(3), 461–475 (2017)CrossRefGoogle Scholar
  25. 25.
    P. Wolszczak, K. Łygas, G. Litak, Dynamics identification of a piezoelectric vibrational energy harvester by image analysis with a high speed camera. Mech. Syst. Signal Process. 107, 43–52 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    P. Wolszczak, W. Samociuk, The control system of the yeast drying process, in MATEC Web of Conferences, vol. 241 (2018), p. 01022. Scholar
  27. 27.
    L.-P. Yang, S.-L. Ding, G. Litak, E.-Z. Song, X.-Z. Ma, Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine. Chaos 25, 013105-1–013105-13 (2015)ADSGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringLublin University of TechnologyLublinPoland
  2. 2.Faculty of Production EngineeringUniversity of Life Sciences in LublinLublinPoland

Personalised recommendations