Skip to main content

Identification of Non-stationary and Non-linear Drying Processes

  • Conference paper
  • First Online:
Book cover Topics in Nonlinear Mechanics and Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 228))

Abstract

This chapter discusses a problem of control of a non-stationary and a non-linear drying process of food raw materials, especially yeast. Industrial yeast drying is a non-stationary and a non-linear process with a transport delay. In this work the identification of the yeast drying process was presented. Models for different time intervals of the closed control system were developed. Changes in the model parameters (non-stationarity) caused deterioration in the stability reserve. The developed models will be used to synthesize the control system in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    FPE: Final prediction error means percent fit to estimation data.

  2. 2.

    MSE: Mean-square error.

References

  1. G. Battistelli, D. Mari, D. Selvi, P. Tesi, Direct control design via controller unfalsification. Int. J. Robust Nonlinear Control 28(12), 3694–3712 (2017)

    Article  MathSciNet  Google Scholar 

  2. D. Bayrock, W.M. Ingledew, Mechanism of viability loss during fluidized bed drying of baker’s yeast. Food Res. Int. 30(6), 417–425 (1997). https://doi.org/10.1016/S0963-9969(97)00072-0

    Article  Google Scholar 

  3. T. Borowy, Everything about yeast (in Polish). Mistrz branży (2014). http://mistrzbranzy.pl/artykuly/pokaz/Wszystko-o-drozdzach-1721.html

  4. R. Cechowicz, P. Staczek, Computer supervision of the group of compressors connected in parallel. Maint. Reliab. 16(2), 198–202 (2014)

    Google Scholar 

  5. K. Charoensopharat, P. Thanonkeo, S. Thanonkeo, M. Yamada, Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus using consolidated bioprocessing. Antonie Leeuwenhoek 108(1), 173–190 (2015). https://doi.org/10.1007/s10482-015-0476-5

    Article  Google Scholar 

  6. E. Gamero-Sandemetrio, L. Payá-Tormo, R. Gómez-Pastor, A. Aranda, E. Matallana, Non-canonical regulation of glutathione and trehalose biosynthesis characterizes non-Saccharomyces wine yeasts with poor performance in active dry yeast production. Microb. Cell 5(4), 184–197 (2018)

    Article  Google Scholar 

  7. C.E. Garcia, M. Morari, Internal model control. A unifying review and some new results. Ind. Eng. Chem. Process. Des. Dev. 21, 308–323 (1982)

    Article  Google Scholar 

  8. C.E. Garcia, M. Morari, Internal model control. 2. Design procedure for multivariable systems. Ind. Eng. Chem. Process. Des. Dev. 24, 472–484 (1985)

    Article  Google Scholar 

  9. P. Gervais, I. Maranon, Effect of the kinetics of temperature variation on Saccharomyces cerevisiae viability and permeability. Biochem. Biophys. Acta 1235(1), 52–56 (1995)

    Article  Google Scholar 

  10. P. Harris, M. Arafa, G. Litak, C.R. Bowen, J. Iwaniec, Output response identification in a multistable system for piezoelectric energy harvesting. Eur. Phys. J. B 90(1), 1–11 (2017)

    Article  Google Scholar 

  11. H. Hjalmarsson, From experiment design to closed-loop control. Automatica 41, 393–438 (2005)

    Article  MathSciNet  Google Scholar 

  12. D.M. Jenkins, C.D. Powell, T. Fischborn, K.A. Smart, Rehydration of active dry brewing yeast and its effect on cell viability. J. Inst. Brew. 117(3), 377–382 (2011)

    Article  Google Scholar 

  13. A. Kamińska-Dwórznicka, A. Skoniecka, The influence of drying methods, parameters and the way of storage on the activity of bakery yeasts (in Polish). Zeszyty Problemowe Postępów Nauk Rolniczych 573, 35–42 (2013)

    Google Scholar 

  14. T. Kudra, C. Strumiłło, Thermal processing of biomaterials. Gordon and Breach Science. OPA Amsterdam (1998)

    Google Scholar 

  15. S.B. Lee, W.S. Choi, H.J. Jo, S.H. Yeo, H.D. Park, Optimization of air-blast drying process for manufacturing Saccharomyces cerevisiae and non-Saccharomyces yeast as industrial wine starters. AMB Express 6(1), 105 (2016)

    Article  Google Scholar 

  16. G. Litak, R. Rusinek, Identification of turning and milling processes by stochastic Langevin equations, in 4th IEEE International Conference on Nonlinear Science and Complexity (2012), pp. 41–44

    Google Scholar 

  17. L. Ljung, System identification: theory for the user, 2nd edn. (Prentice Hall PTR, Upper Saddle River, 1999). http://dx.doi.org/10.1002/047134608x.w1046

  18. A. Martynenko, Computer vision for real-time control in drying. Food Eng. Rev. 9(2), 91–111 (2017). https://doi.org/10.1007/s12393-017-9159-5

    Article  Google Scholar 

  19. F.I. Mensonides, S. Brul, K.J. Hellingwerf, B.M. Bakker, M.J. Teixeira de Mattos, A kinetic model of catabolic adaptation and protein reprofiling in Saccharomyces cerevisiae during temperature shifts. FEBS J. 281(3), 825–841 (2014)

    Article  Google Scholar 

  20. D. Muhammad, Z. Ahmad, N. Aziz, Implementation of internal model control (IMC) in continuous distillation column, in Proceedings of the 5th International Symposium on Design, Operation and Control of Chemical Processes (2010), pp. 812–821

    Google Scholar 

  21. M. Pasławska, Influence of the fountain drying temperature on the dewatering kinetics and yeast viability (in Polish). Inżynieria Rolnicza 5(103), 161–166 (2008)

    Google Scholar 

  22. W. Samociuk, Z. Krzysiak, M. Szmigielski, J. Zarajczyk, Z. Stropek, K. Gołacki, G. Bartnik, A. Skic, A. Nieoczym, Modernization of the control system to reduce a risk of severe accidents during non-pressurized ammonia storage (in Polish). Przemysł Chemiczny 95(5), 1000–1003 (2016). https://doi.org/10.15199/62.2016.5.29

    Article  Google Scholar 

  23. W. Samociuk, A. Wyciszkiewicz, K. Gołacki, T. Otto, Risk of catastrophic failure of the reactor for urea synthesis (in Polish). Przemysł Chemiczny 96(8), 1763–1766 (2017). https://doi.org/10.15199/62.2017.8.32

    Article  Google Scholar 

  24. A. Techaparin, P. Thanonkeo, P. Klanrit, High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion. Braz. J. Microbiol. 48(3), 461–475 (2017)

    Article  Google Scholar 

  25. P. Wolszczak, K. Łygas, G. Litak, Dynamics identification of a piezoelectric vibrational energy harvester by image analysis with a high speed camera. Mech. Syst. Signal Process. 107, 43–52 (2018)

    Article  ADS  Google Scholar 

  26. P. Wolszczak, W. Samociuk, The control system of the yeast drying process, in MATEC Web of Conferences, vol. 241 (2018), p. 01022. https://doi.org/10.1051/matecconf/201824101022

    Article  Google Scholar 

  27. L.-P. Yang, S.-L. Ding, G. Litak, E.-Z. Song, X.-Z. Ma, Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine. Chaos 25, 013105-1–013105-13 (2015)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Wolszczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wolszczak, P., Samociuk, W. (2019). Identification of Non-stationary and Non-linear Drying Processes. In: Belhaq, M. (eds) Topics in Nonlinear Mechanics and Physics. Springer Proceedings in Physics, vol 228. Springer, Singapore. https://doi.org/10.1007/978-981-13-9463-8_15

Download citation

Publish with us

Policies and ethics