Skip to main content

Complex Fractional Moments for the Characterization of the Probabilistic Response of Non-linear Systems Subjected to White Noises

  • Conference paper
  • First Online:
  • 507 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 228))

Abstract

In this chapter the solution of Fokker-Planck-Kolmogorov type equations is pursued with the aid of Complex Fractional Moments (CFMs). These quantities are the generalization of the well-known integer-order moments and are obtained as Mellin transform of the Probability Density Function (PDF). From this point of view, the PDF can be seen as inverse Mellin transform of the CFMs, and it can be obtained through a limited number of CFMs. These CFMs’ capability allows to solve the Fokker-Planck-Kolmogorov equation governing the evolutionary PDF of non-linear systems forced by white noise with an elegant and efficient strategy. The main difference between this new approach and the other one based on integer moments lies in the fact that CFMs do not require the closure scheme because a limited number of them is sufficient to accurately describe the evolutionary PDF and no hierarchy problem occurs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Alotta, M. Di Paola, Probabilistic characterization of nonlinear systems under α-stable white noise via complex fractional moments. Phys. A 420, 265–276 (2015)

    Article  MathSciNet  Google Scholar 

  2. G. Alotta, M. Di Paola, F.P. Pinnola, Cross-correlation and cross-power spectral density representation by complex spectral moments. Int. J. Non-Linear Mech. 94, 20–27 (2017)

    Article  ADS  Google Scholar 

  3. D.C.C. Bover, Moment equation methods for nonlinear stochastic system. J. Math. Anal. Appl. 65, 306–320 (1978)

    Article  MathSciNet  Google Scholar 

  4. S. Butera, M. Di Paola, Fractional differential equations solved by using Mellin transform. Comm. Nonlinear Sci. Num. Simul. 19(7), 2220–2227 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  5. G.Q. Cai, Y.K. Lin, Exact and approximate solutions for randomly excited non-linear systems. Int. J. Nonlinear Mech. 31, 647–655 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Chechkin, V. Gonchar, J. Klafter, R. Metzler, L. Tanatarov, Stationary state of non-linear oscillator driven by Lévy noise. Chem. Phys. 284, 233–251 (2002)

    Article  Google Scholar 

  7. G. Cottone, M. Di Paola, On the use of fractional calculus for the probabilistic characterization of random variable. Probab. Eng. Mech. 24, 321–330 (2009)

    Article  Google Scholar 

  8. G. Cottone, M. Di Paola, A new representation of power spectral density and correlation function by means of fractional spectral moments. Probab. Eng. Mech. 25(3), 348–353 (2010)

    Article  Google Scholar 

  9. G. Cottone, M. Di Paola, R. Metzler, Fractional calculus approach to the statistical characterization of random variables and vectors. Phys. A 389, 909–920 (2010)

    Article  MathSciNet  Google Scholar 

  10. H. Dai, Z. Ma, L. Li, An improved complex fractional moment-based approach for the probabilistic characterization of random variables. Probab. Eng. Mech. 53, 52–58 (2018)

    Article  Google Scholar 

  11. A. Di Matteo, M. Di Paola, A. Pirrotta, Probabilistic characterization of nonlinear systems under Poisson white noise via complex fractional moments. Nonlinear Dyn. 77(3), 729–738 (2014)

    Article  Google Scholar 

  12. A. Di Matteo, M. Di Paola, A. Pirrotta, Poisson white noise parametric input and response by using complex fractional moments. Probab. Eng. Mech. 38, 119–126 (2014)

    Article  Google Scholar 

  13. M. Di Paola, G. Ricciardi, M. Vasta, A method for the probabilistic analysis of nonlinear systems. Probab. Eng. Mech. 10, 1–10 (1995)

    Article  Google Scholar 

  14. M. Di Paola, Fokker Planck equation solved in terms of complex fractional moments. Probab. Eng. Mech. 38, 70–76 (2014)

    Article  Google Scholar 

  15. M. Di Paola, F.P. Pinnola, Riesz fractional integrals and complex fractional moments for the probabilistic characterization of random variables. Probab. Eng. Mech. 29, 149–156 (2012)

    Article  Google Scholar 

  16. G.K. Er, Exponential closure methods for some randomly excited nonlinear systems. Int. J. Nonlinear Mech. 35, 69–78 (2000)

    Article  ADS  Google Scholar 

  17. C.W. Gardiner, Handbook of Stochastic Methods for Physics Chemistry and The Natural Science (Springer, Berlin, 1983)

    Book  Google Scholar 

  18. R. Hilfer, Application of Fractional Calculus in Physics (World Scientific, Singapore, 2000)

    Book  Google Scholar 

  19. R.A. Ibrahim, Parametric Random Vibrations (Wiley, New York, 1985)

    Google Scholar 

  20. R. Iwankiewicz, S.R.K. Nielsen, Solution techniques for pulse problems in non-linear stochastic dynamics Original Research Article. Probab. Eng. Mech. 15, 25–36 (2000)

    Article  Google Scholar 

  21. X. Jin, Y. Wang, Z. Huang, M. Di Paola, Constructing transient response probability density of non-linear system through complex fractional moments. Int. J. Non-Linear Mech. 65, 253–259 (2014)

    Article  ADS  Google Scholar 

  22. I.A. Kougioumtzoglou, P.D. Spanos, An analytical Wiener path integral technique for non-stationary response determination of nonlinear oscillators. Probab. Eng. Mech. 28, 125–131 (2012)

    Article  Google Scholar 

  23. Y.K. Lin, Probabilistic Theory of Structural Dynamics (McGraw Hill, New York, 1967)

    Google Scholar 

  24. E. Mamontov, A. Naess, An analytical-numerical method for fast evaluation of probability densities for transient solutions of nonlinear Itô’s stochastic differential equations. Int. J. Eng. Sci. 47, 116–130 (2009)

    Article  Google Scholar 

  25. G. Muscolino, G. Ricciardi, M. Vasta, Stationary and non-stationary probability density function for nonlinear oscillator. Int. J. Nonlinear Mech. 32, 1051–1064 (1997)

    Article  Google Scholar 

  26. G. Muscolino, G. Ricciardi, Probability density function of MDOF systems under non-normal delta-correlated inputs. Comput. Methods Appl. Mech. Eng. 168, 121–133 (1999)

    Article  ADS  Google Scholar 

  27. A. Naess, V. Moe, Efficient path integration methods for nonlinear dynamic systems. Probab. Eng. Mech. 15, 221–231 (2000)

    Article  Google Scholar 

  28. F.P. Pinnola, Statistical correlation of fractional oscillator response by complex spectral moments and state variable expansion. Commun. Nonlinear Sci. Numer. Simul. 39, 343–359 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. A. Pirrotta, R. Santoro, Probabilistic response of nonlinear systems under combined normal and Poisson white noise via path integral method. Probab. Eng. Mech. 25, 25–32 (2011)

    Google Scholar 

  30. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  31. H. Risken, The Fokker-Planck Equation. Methods of Solution and Applications (Springer, Berlin, 1989)

    Book  Google Scholar 

  32. J.B. Roberts, P.D. Spanos, Stochastic averaging: an approximate method of solving random vibration problems Review Article. Int. J. Non-Linear Mech. 21, 111–134 (1986)

    Article  ADS  Google Scholar 

  33. G.S. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach Science Publishers, 1993)

    Google Scholar 

  34. P.D. Spanos, A. Sofi, M. Di Paola, Nonstationary response envelope probability densities of nonlinear oscillators. J. Appl. Mech. Trans. ASME 74(2), 315–324 (2007)

    Article  ADS  Google Scholar 

  35. B.F. Spencer, L.A. Bergman, On the numerical solution of the Fokker-Planck equation for nonlinear stochastic systems. Nonlinear Dyn. 4, 357–372 (1993)

    Article  Google Scholar 

  36. A. Vriza, A. Kargioti, P.J. Papakanellos, G. Fikioris, Analytical evaluation of certain integrals occurring in studies of wireless communications systems using the Mellin-transform method. Phys. Comm. 31, 133–140 (2018)

    Article  Google Scholar 

  37. W.Q. Zhu, Stochastic averaging method in random vibration. Appl. Mech. Rev. 41, 189–199 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonina Pirrotta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Di Paola, M., Pirrotta, A., Alotta, G., Di Matteo, A., Pinnola, F.P. (2019). Complex Fractional Moments for the Characterization of the Probabilistic Response of Non-linear Systems Subjected to White Noises. In: Belhaq, M. (eds) Topics in Nonlinear Mechanics and Physics. Springer Proceedings in Physics, vol 228. Springer, Singapore. https://doi.org/10.1007/978-981-13-9463-8_11

Download citation

Publish with us

Policies and ethics