3D Bioprinting of Non-viscous Bioink

  • Liliang OuyangEmail author
Part of the Springer Theses book series (Springer Theses)


Photo-crosslinkable hydrogels have great potential as bioinks. These materials have been developed over the past few decades to encompass a wide range of properties, and they have been of significant interest for their applicability in cell encapsulation and tissue formation. Despite the plethora of photo-crosslinkable hydrogels under development in the biomaterials field, their application to bioprinting is hindered through their generally low initial viscosity and challenges in polymerizing fast enough to maintain printed structures. To overcome this limitation, photo-crosslinkable hydrogels have been combined with polymers that gel through other mechanisms, such as with supramolecular assembly, temperature, or exposure to ions. This is not ideal, as it alters the material environment for cells. To address these challenges in printing photo-crosslinkable materials, here we present a generalizable bioprinting method to enable 3D printing of hydrogel structures from photosensitive precursors. In this approach, we introduce the light through a photo-permeable capillary (e.g., silicon tubing, glass) to crosslink the hydrogel immediately prior to leaving the needle and before deposition, which we termed in situ crosslinking. Advantages to this approach are (i) that it does not include any viscosity modulation or copolymerization with other polymers, (ii) that it can be generalized to different photo-crosslinkable hydrogel formulations, (iii) that it permits the encapsulation of viable cells, and (iv) that it can be used to print heterogeneous and complex structures.


  1. 1.
    Pereira RF, Bártolo PJ (2015) 3D bioprinting of photocrosslinkable hydrogel constructs. J Appl Polym Sci 132(48):42458CrossRefGoogle Scholar
  2. 2.
    Caliari SR, Burdick JA (2016) A practical guide to hydrogels for cell culture. Nat Methods 13(5):405–414CrossRefGoogle Scholar
  3. 3.
    Ouyang L, Highley CB, Rodell CB, Sun W, Burdick JA (2016) 3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking. ACS Biomater Sci Eng 2(10):1743–1751CrossRefGoogle Scholar
  4. 4.
    Kesti M, Muller M, Becher J, Schnabelrauch M, D’Este M, Eglin D, Zenobi-Wong M (2015) A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation. Acta Biomater 11:162–172CrossRefGoogle Scholar
  5. 5.
    Hockaday LA, Kang KH, Colangelo NW, Cheung PY, Duan B, Malone E, Wu J, Girardi LN, Bonassar LJ, Lipson H, Chu CC, Butcher JT (2012) Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4(3):035005CrossRefGoogle Scholar
  6. 6.
    Ouyang L, Highley CB, Sun W, Burdick JA (2017) A generalizable strategy for the 3D bioprinting of hydrogels from nonviscous photo-crosslinkable inks. Adv Mater 29(8)CrossRefGoogle Scholar
  7. 7.
    Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A (2015) Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73:254–271CrossRefGoogle Scholar
  8. 8.
    Gramlich WM, Kim IL, Burdick JA (2013) Synthesis and orthogonal photopatterning of hyaluronic acid hydrogels with thiol-norbornene chemistry. Biomaterials 34(38):9803–9811CrossRefGoogle Scholar
  9. 9.
    Loessner D, Meinert C, Kaemmerer E, Martine LC, Yue K, Levett PA, Klein TJ, Melchels FPW, Khademhosseini A, Hutmacher DW (2016) Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms. Nat Protoc 11(4):727–746CrossRefGoogle Scholar
  10. 10.
    Kim G, Ahn S, Kim Y, Cho Y, Chun W (2011) Coaxial structured collagen-alginate scaffolds: fabrication, physical properties, and biomedical application for skin tissue regeneration. J Mater Chem 21(17):6165–6172CrossRefGoogle Scholar
  11. 11.
    Colosi C, Shin SR, Manoharan V, Massa S, Costantini M, Barbetta A, Dokmeci MR, Dentini M, Khademhosseini A (2016) Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv Mater 28(4):677–684CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations