Skip to main content

Time-Resolved Study on Vibrational Energy Relaxation of Aromatic Molecules and Their Clusters in the Gas Phase

  • Chapter
  • First Online:
Physical Chemistry of Cold Gas-Phase Functional Molecules and Clusters

Abstract

In this chapter, time-resolved study on the vibrational energy relaxation (VER) of gas-phase aromatic molecules and their clusters cooled in supersonic jets are described. The experiment is performed by picosecond IR-UV pump-probe spectroscopy, where the molecules are excited to a specific vibrational level of the electronic ground state (S0) by a picosecond IR pulse laser, and the time evolution of the excited level as well as the energy transferred levels are monitored by a picosecond UV pule laser. In the molecule in isolated condition, VER involves intramolecular vibrational energy redistribution (IVR), and in the cluster IVR is followed by vibrational predissociation (VP), if the initial vibrational energy is larger than the binding energy of the cluster. We focus VER of high frequency vibrations; OH, NH and CH stretching vibrations. Among these vibrations, OH and NH starching vibrations are localized motion, while the CH stretching vibration is the collective motion of several CH groups. The molecules studied in this chapter is phenol, aniline, 2-aminopyridine and benzene. We will see how the difference of the vibrational motion affects the IVR process and its speed in these molecules. We also investigate the IVR and VP of the H-bonded clusters and van der Waals clusters. We discuss the route of the energy flow starting from the IR excited vibration to other vibrational levels within the molecules and clusters and the time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laubereau, A., Kaiser, W.: Vibrational dynamics of liquids and solids investigated by picosecond light pulses. Rev. Mod. Phys. 50, 607–666 (1978)

    Article  CAS  Google Scholar 

  2. Faltermeier, B., Protz, R., Maier, M.: Concentration and temperature dependence of electronic and vibrational energy relaxation of O2 in liquid mixtures. Chem. Phys. 62, 377–385 (1981)

    Article  CAS  Google Scholar 

  3. Heilweil, E.J., Doany, F.E., Moore, R., Hochstrasser, R.M.: Vibrational energy relaxation of the cyanide ion in aqueous solution. J. Chem. Phys. 76, 5632–5634 (1982)

    Article  CAS  Google Scholar 

  4. Harris, A.L., Brown, J.K., Harris, C.B.: The nature of simple photodissociation reactions in liquids on ultrafast time scales. Annu. Rev. Phys. Chem. 39, 341 (1988)

    Article  CAS  Google Scholar 

  5. Kliner, D.A.V., Alfano, J.C., Barbara, P.F.: Photodissociation and vibrational relaxation of I2 in ethanol. J. Chem. Phys. 98, 5375–5389 (1993)

    Article  CAS  Google Scholar 

  6. Kühne, T.: Vibrational relaxation and geminate recombination in the femtosecond-photodissociation of triiodide in solution. J. Chem. Phys. 105, 10788–10802 (1996)

    Article  Google Scholar 

  7. Egorov, S.A., Skinner, J.L.: A theory of vibrational energy relaxation in liquids. J. Chem. Phys. 105, 7058–7074 (1996)

    Google Scholar 

  8. Tokmakoff, A., Sauter, B., Fayer, M.D.: Temperature-dependent vibrational relaxation in polyatomic liquids: Picosecond infrared pump–probe experiments. J. Chem. Phys. 100, 9035–9043 (1994)

    Article  CAS  Google Scholar 

  9. Hamm, P., Lim, M., Hochstrasser, R.M.: Vibrational energy relaxation of the cyanide ion in water. J. Chem. Phys. 107, 10523–10531 (1997)

    Article  CAS  Google Scholar 

  10. Schultz, S.L., Qian, J., Jean, J.M.: Separability of intra- and intermolecular vibrational relaxation processes in the S1 state of trans-stilbene. J. Phys. Chem. A 101, 1000–1006 (1997)

    Article  CAS  Google Scholar 

  11. Bingemann, D., King, A.M., Crim, F.F.: Transient electronic absorption of vibrationally excited CH2I2: watching energy flow in solution. J. Chem. Phys. 113, 5018–5025 (2000)

    Article  CAS  Google Scholar 

  12. Levinger, N.E., Davis, P.H., Fayer, M.D.: Vibrational relaxation of the free terminal hydroxyl stretch in methanol oligomers: indirect pathway to hydrogen bond breaking. J. Chem. Phys. 115, 9352–9360 (2001)

    Article  CAS  Google Scholar 

  13. Charvat, A., Jens Aβmann, J., Bernd Abel, B.: Real-time probing of intramolecular vibrational energy redistribution and intermolecular vibrational energy transfer of selectively excited CH2I2 molecules in solution. J. Phys. Chem. A 105, 5071–5080 (2001)

    Article  CAS  Google Scholar 

  14. Gaffney, K.J., Piletic, I.R., Fayer, M.D.: Hydrogen bond breaking and reformation in alcohol oligomers following vibrational relaxation of a non-hydrogen-bond donating hydroxyl stretch. J. Phys. Chem. A 106, 9428–9435 (2002)

    Article  CAS  Google Scholar 

  15. Schwarzer, D., Hanisch, C., Kutne, P., Troe, J.: Vibrational energy transfer in highly excited bridged azulene-rryl compounds: direct observation of energy flow through aliphatic chains and into the solvent. J. Phys. Chem. A 106, 8019–8028 (2002)

    Article  CAS  Google Scholar 

  16. Sekiguchi, K., Shimojima, A., Kajimoto, O.: Intramolecular and intermolecular vibrational energy relaxation of CH2I2 dissolved in supercritical fluid. Chem. Phys. Lett. 356, 84–90 (2002)

    Article  CAS  Google Scholar 

  17. Lock, A.J., Cilljamse, J.J., Woutersen, S., Bakker, H.J.: Vibrational relaxation and coupling of two OH-stretch oscillators with an intramolecular hydrogen bond. J. Chem. Phys. 120, 2351–2358 (2004)

    Article  CAS  Google Scholar 

  18. Yamaguchi, S., Hirai, S., Ikeshita, K., Banno, M., Ohta, K., Tominaga, K.: Vibrational dynamics of hydrogen-bonded complexes studied by infrared pump-probe spectroscopy. Rev. Laser Eng. Suppl. 36, 1024–1027 (2008)

    Article  Google Scholar 

  19. Tesar, S.L., Kasyanenko, V.M., Rubtsov, I.V., Rubtsov, G.I., Burin, A.L.: Theoretical study of internal vibrational relaxation and energy transport in polyatomic molecules. J. Phys. Chem. A 117, 315–323 (2013)

    Article  CAS  Google Scholar 

  20. Grubb, M.P., Coulter, M.P., Marroux, H.J.B., Orr-Ewing, A.J., Ashfold, M.N.R.: Unravelling the mechanisms of vibrational relaxation in solution. Chem. Sci. 8, 3062–3069 (2017)

    Article  CAS  Google Scholar 

  21. Heilweil, E.J., Casassa, M.P., Cavanagh, R.R., Stephenson, J.C.: Vibrational energy decay of surface adsorbates. In: Laubereau, A., et al. (eds.) Time-Resolved Vibrational Spectroscopy. Springer Proceedings in Physics, pp 71–75. Springer, Berlin (1985)

    Google Scholar 

  22. Hirose, C., Goto., Y., Akamatsu, N., Kondo, J., Domen, K.: Measurement of vibrational energy relaxation of a surface hydroxyl group by ultrashort tunable infrared pulses. Surf. Sci. 283, 244–247 (1993)

    Article  CAS  Google Scholar 

  23. Heilweil, E.J.: Vibrational population lifetimes of OH(v = 1) in natural crystalline micas. Chem. Phys. Lett. 129, 48–54 (1986)

    Article  CAS  Google Scholar 

  24. Stewart, G., Ruoff, R., Kulp, T., NcDonlad, J.D.: Intramolecular vibrational relaxation in dimethyl ether. J. Chem. Phys. 80, 5353–5358 (1984)

    Article  CAS  Google Scholar 

  25. Parmenter, C.S., Stone, B.M.: The methyl rotor as an accelerating functional group for IVR. J. Chem. Phys. 84, 4710–4711 (1986)

    Article  CAS  Google Scholar 

  26. Riedle, E., Neusser, H.J., Schlag, E.W., Lin, S.H.: Intramolecular vibrational relaxation of benzene. J. Phys. Chem. 88, 198–202 (1984)

    Article  CAS  Google Scholar 

  27. Bondybey, V.E.: Relaxation and vibrational energy redistribution processes in polyatomic molecules. Ann. Rev. Phys. Chem. 35, 591–612 (1984)

    Article  CAS  Google Scholar 

  28. Gascooke, J.R., Virgo, E.A., Lawrance, W.D.: Torsion-vibration coupling in S1 toluene: implications for IVR, the torsional barrier height, and rotational constants. J. Chem. Phys. 143, 044313 (13 pp.) (2015)

    Article  Google Scholar 

  29. Borst, D.R., Pratt, D.W.: Toluene: structure, dynamics, and barrier to methyl group rotation in its electronically excited state. A route to IVR. J. Chem. Phys. 113, 3658–3669 (2000)

    Article  CAS  Google Scholar 

  30. Kushnarenko, A., Miloglyadov, E., Quack, M., Seyfang, G.: Intramolecular vibrational energy redistribution in HCCCH2X (X = Cl, Br, I) measured by femtosecond pump–probe experiments in a hollow waveguide. Phys. Chem. Chem. Phys. 20, 10949–10959 (2018)

    Article  CAS  Google Scholar 

  31. Ebata, T., Kayano, M., Sato, S., Mikami, N.: Picosecond IR-UV pump-probe spectroscopy. IVR of OH stretching vibration of phenol and phenol dimer. J. Phys. Chem. A 105, 8623–8628 (2001)

    Article  CAS  Google Scholar 

  32. Yamada, Y., Ebata, T., Kayano, M., Mikami, N.: Picosecond IR-UV pump-probe spectroscopic study on the dynamics of vibrational relaxation of jet-cooled phenol I. IVR of the OH and CH stretching vibrations of bare phenol. J. Chem. Phys. 120, 7400–7409 (2004)

    Article  CAS  Google Scholar 

  33. Kayano, M., Ebata, T., Yamada, Y., Mikami, N.: Picosecond IR-UV pump-probe spectroscopic study on the dynamics of vibrational relaxation of jet-cooled phenol II. IVR of the OH stretching vibration of hydrogen-bonded clusters. J. Chem. Phys. 120, 7410–7417 (2004)

    Article  CAS  Google Scholar 

  34. Yamada, Y., Mikami, N., Ebata, T.: Real time detection of doorway states in the intramolecular vibrational energy redistribution of the OH/OD stretching vibration of phenol. J. Chem. Phys. 121, 11530–11534 (2004)

    Article  CAS  Google Scholar 

  35. Yamada, Y., Okanao, J., Mikami, N., Ebata, T.: Picosecond IR-UV pump-probe spectroscopic study on the intramolecular vibrational energy redistribution of NH2 and CH stretching vibrations of jet-cooled aniline. J. Chem. Phys. 123, 124316–124324 (2005)

    Article  Google Scholar 

  36. Yamada, Y., Kayano, M., Mikami, N., Ebata, T.: Picosecond IR-UV pump-probe study on the vibrational relaxation of phenol-ethylene hydrogen-bonded cluster: difference of relaxation route/rate between the donor and the acceptor site excitations. J. Phys. Chem. A 110, 6250–6255 (2006)

    Article  CAS  Google Scholar 

  37. Yamada, Y., Okano, J., Mikami, N., Ebata, T.: Picosecond time-resolved study on the intramolecular vibrational energy redistribution of NH stretching vibration of jet-cooled aniline and its isotopomer. Chem. Phys. Lett. 432, 421–425 (2006)

    Article  CAS  Google Scholar 

  38. Yamada, Y., Katsumoto, Y., Ebata, T.: Picosecond IR-UV pump-probe spectroscopic study on the vibrational energy flow in isolated molecules and clusters. Phys. Chem. Chem. Phys. 9, 1170–1185 (2007)

    Article  CAS  Google Scholar 

  39. Yamada, Y., Mikami, N., Ebata, T.: Relaxation dynamics of NH stretching vibrations of 2-aminopyridine and its dimer in a supersonic beam. Proc. Nat. Acad. Sci. U.S.A. 105, 12690–12695 (2008)

    Article  CAS  Google Scholar 

  40. Kusaka, R., Ebata, T.: Remarkable site difference of vibrational energy relaxation in benzene dimer: picosecond time-resolved IR-UV pump-probe spectroscopic study. Angew. Chemie Int. Ed. 122, 7143–7146 (2010)

    Article  Google Scholar 

  41. Kusaka, R., Inokuchi, Y., Ebata, T.: Vibrational energy relaxation of benzene dimer and trimer in the CH stretching region studied by picosecond time-resolved IR-UV pump-probe spectroscopy. J. Chem. Phys. 136, 044304 (8 pp.) (2012)

    Article  Google Scholar 

  42. Miyazaki, Y., Inokuchi, Y., Ebata, T., Petković, M.: Study on vibrational relaxation dynamics of phenol-water complex by picosecond time-resolved IR-UV pump-probe spectroscopy in a supersonic molecular beam. Chem. Phys. 419, 205–211 (2013)

    Article  CAS  Google Scholar 

  43. Pimentel, G.C., McClellan, A.L.: The Hydrogen Bond. W. H. Freeman and Company, San Francisco and London (1960)

    Google Scholar 

  44. Colthup, N.B., Daly, L.H., Wiberley, S.E.: Introduction to infrared and Raman spectroscopy, 3rd ed. Academic Press. Inc. Hartcourt Brace & Company, Publishers, Boston, San Diego, New York, London, Sydney, Tokyo, Toronto (1990)

    Google Scholar 

  45. Bist, H.D., Brand, J.C.D., Williams, D.R.: The vibrational spectrum and torsion of phenol. J. Mol. Spectrosc. 24, 402–412 (1967)

    Article  CAS  Google Scholar 

  46. Watanabe, T., Ebata, T., Tanabe, S., Mikami, N.: Size-selected vibrational spectra of phenol-(H2O)n (n = 1–4) clusters observed by IR-UV double resonance and stimulated Raman-UV double resonance spectroscopies. J. Chem. Phys. 105, 408–419 (1996)

    Article  Google Scholar 

  47. Honda, M., Fujii, A., Fujimaki, E., Ebata, T., Mikami, N.: NH stretching vibrations of jet-cooled aniline and its derivatives in the neutral and cationic ground states. J. Phys. Chem. A 107, 3678–3686 (2003)

    Article  CAS  Google Scholar 

  48. Dirac, P.A.M.: The quantum theory of emission and absorption of radiation. Proc. Roy. Soc. (London) A 114, 243–265 (1927)

    Google Scholar 

  49. Courty, A., Mons, M., Dimicoli, I., Piuzzi, F., Brenner, V., Millie, P.: Ionization, energetics, and geometry of the phenol-S complexes (S = H2O, CH3OH, and CH3OCH3). J. Phys. Chem. A 102, 4890–4898 (1998)

    Article  CAS  Google Scholar 

  50. Holbrook, K.A., Pilling, M.J., Robertson, S.H.: Unimolecular Reaction, 2nd ed. Wiley (1996)

    Google Scholar 

  51. van der Avoird, A., Podeszwa, R., Szalewicz, K., Leforestier, C., van Harrevelt, R., Bunker, P.R., Schnell, M., von Helden, G., Meijer, G.: Vibration–rotation-tunneling states of the benzene dimer: an ab initio study. Phys. Chem. Chem. Phys. 12, 8219–8240 (2010)

    Article  CAS  Google Scholar 

  52. Page, R.H., Shen, Y.R., Lee, Y.Y.: Local modes of benzene and benzene dimer, studied by infrared–ultraviolet double resonance in a supersonic beam. J. Chem. Phys. 88, 4621–4636 (1988)

    Article  CAS  Google Scholar 

  53. Erlekam, U., Frankowski, M., Meijer, G., von Helden, G.: An experimental value for the B1u C–H stretch mode in benzene. J. Chem. Phys. 124, 171101 (5 pp.) (2006)

    Article  Google Scholar 

  54. Börnsen, K.O., Selzle, H.L., Schlag, E.W.: The interactions in the benzene dimer in a supersonic jet: study of the S1 level with isotopic labeling. Z. Naturforsch 39a, 1255–1258 (1984)

    Google Scholar 

  55. Börnsen, K.O., Selzle, H.L., Schlag, E.W.: Spectra of isotopically mixed benzene dimers: details on the interaction in the vdW bond. J. Chem. Phys. 85, 1726–1732 (1986)

    Article  Google Scholar 

  56. Kiermeier, A., Ernstberger, B., Neusser, H.J., Schlag, E.W.: Benzene clusters in a supersonic beam. Multiphoton ionization, mass analysis and dissociation kinetics. Z. Phys. D At. Mol. Clusters 10, 311–317 (1988)

    Google Scholar 

  57. Scherzer, W., Krätzschmar, O., Selzle, H.L., Schlag, E.W.: Structural isomers of the benzene dimer from mass selective hole-burning spectroscopy. Z. Naturforsch 47a, 1248–1252 (1992)

    Google Scholar 

  58. Engkvist, O., Hobza, P., Selzle, H.L., Schlag, E.W.: Benzene trimer and benzene tetramer: structures and properties determined by the nonempirical model (NEMO) potential calibrated from the CCSD (T) benzene dimer energies. J. Chem. Phys. 110, 5758–5762 (1999)

    Article  CAS  Google Scholar 

  59. Ye, X.Y., Li, Z.H., Wang, W.N., Fan, K.N., Xu, W., Hua, Z.Y.: The parallel π–π stacking: a model study with MP2 and DFT methods. Chem. Phys. Lett. 397, 56–61 (2004)

    Article  CAS  Google Scholar 

  60. Tauer, T.P., Sherrill, C.D.: Beyond the benzene dimer: an investigation of the additivity of interactions. J. Phys. Chem. A 109, 10475–10478 (2005)

    Article  CAS  Google Scholar 

  61. Iimori, T., Aoki, Y., Ohshima, Y.: S1-S0 vibronic spectra of benzene clusters revisited. II. The trimer. J. Chem. Phys. 117, 3675–3686 (2002)

    Article  CAS  Google Scholar 

  62. Schaeffer, M.W., Maxton, P.M., Felker, P.M.: The size dependence of ground-state collective vibrational modes in molecular clusters. Benzene dimer through pentamer. Chem. Phys. Lett. 224, 544–550 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Ebata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ebata, T. (2019). Time-Resolved Study on Vibrational Energy Relaxation of Aromatic Molecules and Their Clusters in the Gas Phase. In: Ebata, T., Fujii, M. (eds) Physical Chemistry of Cold Gas-Phase Functional Molecules and Clusters. Springer, Singapore. https://doi.org/10.1007/978-981-13-9371-6_9

Download citation

Publish with us

Policies and ethics