Skip to main content

Characterization of Chemically Modified Gold/Silver Superatoms in the Gas Phase

  • Chapter
  • First Online:
Physical Chemistry of Cold Gas-Phase Functional Molecules and Clusters

Abstract

Atomically precise Au and Ag clusters protected by organic ligands can be viewed as chemically modified superatoms. These chemically modified Au/Ag superatoms have gained interests as promising building units of functional materials as well as ideal platforms to study the size-dependent evolution of structures and physicochemical properties. Mass spectrometry not only allows us to determine the chemical compositions of the synthesized superatoms but also gives us molecular-level insights into the mechanism of complex processes in solution. A variety of the gas-phase methods including ion-mobility–mass spectrometry, collision- or surface-induced dissociation mass spectrometry, photoelectron spectroscopy, and photodissociation mass spectrometry have been applied to the chemically modified Au/Ag superatom ions isolated in the gas phase. These studies have provided novel and complementary information on their intrinsic geometric and electronic structures that cannot be obtained by conventional characterization methods. This chapter surveys the recent progress in the gas-phase studies on chemically synthesized Au/Ag superatoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haberland, H. (ed.): Clusters of Atoms and Molecules. Springer, Berlin (1994)

    Google Scholar 

  2. Dietz, T.G., Duncan, M.A., Powers, D.E., Smalley, R.E.: Laser production of supersonic metal cluster beams. J. Chem. Phys. 74, 6511 (1981); Bondybey, V.E., English, J.H.: Laser induced fluorescence of metal clusters produced by laser vaporization: gas phase spectrum of Pb2. J. Chem. Phys. 74, 6978 (1982)

    Article  CAS  Google Scholar 

  3. Haberland, H., Karrais, M., Mall, M.: A new type of cluster and cluster ion source. Z. Phys. D 20, 413 (1991)

    Article  CAS  Google Scholar 

  4. de Heer, W.A.: The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 65, 611 (1993)

    Article  CAS  Google Scholar 

  5. Taylor, K.J., Pettiette-Hall, C.L., Cheshnovsky, O., Smalley, R.E.: Ultraviolet photoelectron spectra of coinage metal clusters. J. Chem. Phys. 96, 3319 (1992)

    Article  CAS  Google Scholar 

  6. Li, J., Li, X., Zhai, H.-J., Wang, L.-S.: Au20: a tetrahedral cluster. Science 299, 864 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. Häkkinen, H., Yoon, B., Landman, U., Li, X., Zhai, H.-J., Wang, L.-S.: On the electronic and atomic structures of small Au n (N = 4–14) clusters: a photoelectron spectroscopy and density-functional study. J. Phys. Chem. A 107, 6168 (2003)

    Article  CAS  Google Scholar 

  8. Bulusu, S., Li, X., Wang, L.-S., Zeng, X.C.: Evidence of hollow golden cages. Proc. Natl. Acad. Sci. 103, 8326 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lechtken, A., Schooss, D., Stairs, J.R., Blom, M.N., Furche, F., Morgner, N., Kostko, O., von Issendorff, B., Kappes, M.M.: Au34: a chiral gold cluster? Angew. Chem., Int. Ed. 46, 2944 (2007)

    Google Scholar 

  10. Huang, W., Ji, M., Dong, C.-D., Gu, X., Wang, L.-M., Gong, X.G., Wang, L.-S.: Relativistic effects and the unique low-symmetry structures of gold nanoclusters. ACS Nano 2, 897 (2008)

    Article  CAS  PubMed  Google Scholar 

  11. Gilb, S., Jacobsen, K., Schooss, D., Furche, F., Ahrichs, R., Kappes, M.M.: Electronic photodissociation spectroscopy of Au n ·Xe (n = 7–11) versus time-dependent density functional theory prediction. J. Chem. Phys. 121, 4619 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. Glib, S., Weis, P., Furche, F., Ahlrichs, R., Kappes, M.M.: Structures of small gold cluster cations (Au + n , n < 14): ion mobility measurements versus density functional calculations. J. Chem. Phys. 116, 4094 (2002)

    Article  CAS  Google Scholar 

  13. Furche, F., Ahlrichs, R., Weis, P., Jacob, C., Gilb, S., Bierweiler, T., Kappes, M.M.: The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations. J. Chem. Phys. 117, 6982 (2002)

    Article  CAS  Google Scholar 

  14. Xing, X., Yoon, B., Landman, U., Parks, J.H.: Structural evolution of Au nanoclusters: from planar to cage to tubular motifs. Phys. Rev. B 74, 165423 (2006)

    Article  CAS  Google Scholar 

  15. Gruene, P., Rayner, D.M., Redlich, B., van der Meer, A.F.G., Lyon, J.T., Meijer, G., Fielicke, A.: Structures of neutral Au7, Au19, and Au20 clusters in the gas phase. Science 321, 674 (2008)

    Article  CAS  PubMed  Google Scholar 

  16. St. Becker, Dietrich, G., Hase, H.-U., Kluge, H.-J., Kreisle, D., St. Krücheberg, Lindinger, M., Lützenkirchen, K., Weidele, H., Ziegler, J.: Collision induced dissociation of stored gold cluster ions. Z. Phys. D 30, 341 (1994)

    Google Scholar 

  17. Wallace, W.T., Whetten, R.L.: Coadsorption of CO and O2 on selected gold clusters: evidence for efficient room-temperature CO2 generation. J. Am. Chem. Soc. 124, 7499 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. Cohen, M.L., Chou, M.Y., Knight, W.D., de Heer, W.A.: Physics of metal clusters. J. Phys. Chem. 91, 3141 (1987)

    Article  CAS  Google Scholar 

  19. Castleman, A.W., Khanna, S.N.: Clusters, superatoms, and building blocks of new materials. J. Phys. Chem. C 113, 2664 (2009)

    Article  CAS  Google Scholar 

  20. Issendorff, B., Cheshnovsky, O.: Metal to insulator transitions in clusters. Annu. Rev. Phys. Chem. 56, 549 (2005)

    Article  CAS  Google Scholar 

  21. El-Sayed, M.A.: Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc. Chem. Res. 37, 326 (2004)

    Article  CAS  PubMed  Google Scholar 

  22. Landman, U., Luedtke, W.D.: Small is different: energetic, structural, thermal, and mechanical properties of passivated nanocluster assemblies. Faraday Discuss. 125, 1 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. Heiz, U., Sanchez, A., Abbet, S., Schneider, W.D.: Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: each atom counts. J. Am. Chem. Soc. 121, 3214 (1999)

    Article  CAS  Google Scholar 

  24. Landman, U.: Materials by numbers: computations as tools of discovery. Proc. Natl. Acad. Sci. 102, 6671 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Haruta, M., Kobayashi, T., Sano, H., Yamada, N.: Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem. Lett. 16, 405 (1987)

    Article  Google Scholar 

  26. Wang, L.-M., Wang, L.-S.: Probing the electronic properties and structural evolution of anionic gold clusters in the gas phase. Nanoscale 4, 4038 (2012)

    Article  CAS  PubMed  Google Scholar 

  27. Yamazoe, S., Koyasu, K., Tsukuda, T.: Nonscalable oxidation catalysis of gold clusters. Acc. Chem. Res. 47, 816 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. Weis, P.: Structure determination of gaseous metal and semi-metal cluster ions by ion mobility spectrometry. Int. J. Mass Spectrom. 245, 1 (2005)

    Article  CAS  Google Scholar 

  29. Ouyang, R., Xie, Y., Jiang, D.-E.: Global minimization of gold clusters by combining neural network potentials and the basin-hopping method. Nanoscale 7, 14817 (2015)

    Article  CAS  PubMed  Google Scholar 

  30. Parker, D.H., Wurz, P., Chatterjee, K., Lykke, K.R., Hunt, J.E., Pellin, M.J., Hemminger, J.C., Gruen, D.M., Stock, L.M.: High-yield synthesis, separation, and mass-spectrometric characterization of fullerenes C60 to C266. J. Am. Chem. Soc. 113, 7499 (1991)

    Article  CAS  Google Scholar 

  31. Whetten, R.L., Khoury, J.T., Alvarez, M.M., Murthy, S., Vezmar, I., Wang, Z.L., Stephens, P.W., Cleveland, C.L., Luedtke, W.D., Landman, U.: Nanocrystal gold molecules. Adv. Mater. 8, 428 (1996)

    Article  CAS  Google Scholar 

  32. Maity, P., Tsunoyama, H., Yamauchi, M., Xie, S., Tsukuda, T.: Organogold clusters protected by phenylacetylene. J. Am. Chem. Soc. 133, 20123 (2011)

    Article  CAS  PubMed  Google Scholar 

  33. Schmid, G. (ed.), Nanoparticles: From Theory to Application, 2nd, Completely Revised and Updated Ed. (Wiley, New Jersey, 2010)

    Google Scholar 

  34. Narouz, M.R., Osten, K.M., Unsworth, P.J., Man, R.W.Y., Salorinne, K., Takano, S., Tomihara, R., Kaappa, S., Malola, S., Dinh, C.-T., Padmos, J.D., Ayoo, K., Garrett, P.J., Nambo, M., Horton, J.H., Sargent, E.H., Häkkinen, H., Tsukuda, T., Crudden, C.M.: N-Heterocyclic carbene-functionalized magic number gold nanoclusters. Nature Chem. 11, 419 (2019)

    Google Scholar 

  35. Tsukuda, T.: Toward an atomic-level understanding of size-specific properties of protected and stabilized gold clusters. Bull. Chem. Soc. Jpn. 85, 151 (2012)

    Article  CAS  Google Scholar 

  36. Tsukuda, T., Häkkinen, H. (eds.): Protected metal clusters: from fundamentals to applications. Elsevier, Amsterdam (2015)

    Google Scholar 

  37. Jin, R., Zeng, C., Zhou, M., Chen, Y.: Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 116, 10346 (2016)

    Article  CAS  PubMed  Google Scholar 

  38. Chakraborty, I., Pradeep, T.: Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem. Rev. 117, 8208 (2017)

    Article  CAS  PubMed  Google Scholar 

  39. Azubel, M., Koivisto, J., Malola, S., Bushnell, D., Hura, G.L., Koh, A.L., Tsunoyama, H., Tsukuda, T., Pettersson, M., Häkkinen, H., Kornberg, R.D.: Electron microscopy of gold nanoparticles at atomic resolution. Science 345, 909 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bellon, P.L., Cariati, F., Manassero, M., Naldini, L., Sansoni, M.: Novel gold clusters. Preparation, properties, and x-ray structure determination of salts of octakis(triarylphosphine)enneagold, [Au9L8]X3. J. Chem. Soc. D 1423 (1971)

    Google Scholar 

  41. Matsuo, S., Takano, S., Yamazoe, S., Koyasu, K., Tsukuda, T.: Selective and high-yield synthesis of oblate superatom [PdAu8(PPh3)8]2+. ChemElectroChem 3, 1206 (2016)

    Article  CAS  Google Scholar 

  42. McKenzie, L.C., Zaikova, T.O., Hutchison, J.E.: Structurally similar triphenylphosphine-stabilized undecagolds, Au11(PPh3)7Cl3 and [Au11(PPh3)8Cl2]Cl, exhibit distinct ligand exchange pathways with glutathione. J. Am. Chem. Soc. 136, 13426 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Heaven, M.W., Dass, A., White, P.S., Holt, K.M., Murray, R.M.: Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 130, 3754 (2008)

    Article  CAS  PubMed  Google Scholar 

  44. Joshi, C.P., Bootharaju, M.S., Alhilaly, M.J., Bakr, O.M.: [Ag25(SR)18]: the “golden” silver nanoparticle. J. Am. Chem. Soc. 137, 11578 (2015)

    Article  CAS  PubMed  Google Scholar 

  45. Yan, J., Su, H., Yang, H., Malola, S., Lin, S., Häkkinen, H., Zheng, N.: Total structure and electronic structure analysis of doped thiolated silver [MAg24(SR)18]2− (M = Pd, Pt) clusters. J. Am. Chem. Soc. 137, 11880 (2015)

    Article  CAS  PubMed  Google Scholar 

  46. Walter, M., Akola, J., Lopez-Acevedo, O., Jadzinsky, P.D., Calero, G., Ackerson, C.J., Whetten, R.L., Grönbeck, H., Häkkinen, H.: A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl. Acad. Sci. 105, 9157 (2008)

    Article  CAS  Google Scholar 

  47. Kwak, K., Tang, Q., Kim, M., Jiang, D.-E., Lee, D.: Interconversion between superatomic 6-electron and 8-electron configurations of M@Au24(SR)18 clusters (M = Pd, Pt). J. Am. Chem. Soc. 137, 10833 (2015)

    Article  CAS  PubMed  Google Scholar 

  48. Liu, Y., Chai, X., Cai, X., Chen, M., Jin, R., Ding, W., Zhu, Y.: Central doping of a foreign atom into the silver cluster for catalytic conversion of CO2 toward C–C bond formation. Angew. Chem., Int. Ed. 57, 9775 (2018)

    Article  CAS  PubMed  Google Scholar 

  49. Negishi, Y., Nobusada, K., Tsukuda, T.: Glutathione-protected gold clusters revisited: bridging the gap between Gold(I)−Thiolate complexes and Thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 127, 5261 (2005)

    Article  CAS  PubMed  Google Scholar 

  50. Dass, A., Stevenson, A., Dubay, G.R., Tracy, J.B., Murray, R.W.: Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)18−x(L)x. J. Am. Chem. Soc. 130, 5940 (2008)

    Article  CAS  PubMed  Google Scholar 

  51. Tsunoyama, H., Tsukuda, T.: Magic numbers of gold clusters stabilized by PVP. J. Am. Chem. Soc. 131, 18216 (2009)

    Article  CAS  PubMed  Google Scholar 

  52. Kumara, C., Zuo, X., Cullen, D.A., Dass, A.: Faradaurate-940: synthesis, mass spectrometry, electron microscopy, high-energy x-ray diffraction, and x-ray scattering study of Au∼940±20(SR)∼160±4 nanocrystals. ACS Nano 8, 6431 (2014)

    Article  CAS  PubMed  Google Scholar 

  53. Hayashi, S., Ishida, R., Hasegawa, S., Yamazoe, S., Tsukuda, T.: Doping a single palladium atom into gold superatoms stabilized by PVP: emergence of hydrogenation catalysis. Top. Catal. 61, 136 (2018)

    Article  CAS  Google Scholar 

  54. Hasegawa, S., Takano, S., Yamazoe, S., Tsukuda, T.: Prominent hydrogenation catalysis of a PVP-stabilized Au34 superatom provided by doping a single Rh atom. Chem. Commun. 54, 5915 (2018)

    Article  CAS  PubMed  Google Scholar 

  55. Luo, Z.T., Nachammai, V., Zhang, B., Yan, N., Leong, D.T., Jiang, D.E., Xie, J.P.: Toward understanding the growth mechanism: tracing all stable intermediate species from reduction of Au(I)–Thiolate complexes to evolution of Au25 nanoclusters. J. Am. Chem. Soc. 136, 10577 (2014)

    Article  CAS  PubMed  Google Scholar 

  56. Yao, Q.F., Yuan, X., Fung, V., Yu, Y., Leong, D.T., Jiang, D.E., Xie, J.P.: Understanding seed-mediated growth of gold nanoclusters at molecular level. Nat. Commun. 8, 927 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Yao, Q.F., Feng, Y., Fung, V., Yu, Y., Jiang, D.E., Yang, J., Xie, J.P.: Precise control of alloying sites of bimetallic nanoclusters via surface motif exchange reaction. Nat. Commun. 8, 1555 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Zeng, C., Liu, C., Pei, Y., Jin, R.: Thiol ligand-induced transformation of Au38(SC2H4Ph)24 to Au36(SPh-t-Bu)24. ACS Nano. 7, 6138 (2013)

    Google Scholar 

  59. Krishnadas, K.R., Ghosh, A., Baksi, A., Chakraborty, I., Natarajan, G., Pradeep, T.: Intercluster reactions between Au25(SR)18 and Ag44(SR)30. J. Am. Chem. Soc. 138, 140 (2016)

    Article  CAS  PubMed  Google Scholar 

  60. Krishnadas, K.R., Baksi, A., Ghosh, A., Natarajan, G., Pradeep, T.: Structure-conserving spontaneous transformations between nanoparticles. Nat. Commun. 7, 13447 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Takano, S., Hirai, H., Muramatsu, S., Tsukuda, T.: Hydride-mediated controlled growth of a bimetallic (Pd@Au8)2+ superatom to a hydride-doped (HPd@Au10)3+ superatom. J. Am. Chem. Soc. 140, 12314 (2018)

    Article  CAS  PubMed  Google Scholar 

  62. Takano, S., Hirai, H., Muramatsu, S., Tsukuda, T.: Hydrogen-doped gold superatoms (Au9H)2+: synthesis, structure and transformation. J. Am. Chem. Soc. 140, 8380 (2018)

    Article  CAS  PubMed  Google Scholar 

  63. Takano, S., Hasegawa, S., Suyama, M., Tsukuda, T.: Hydride doping to chemically-modified gold-based superatoms. Acc. Chem. Res. 51, 3074 (2018)

    Article  CAS  PubMed  Google Scholar 

  64. Tomihara, R., Hirata, K., Yamamoto, H., Takano, S., Koyasu, K., Tsukuda, T.: Collision-induced dissociation of undecagold clusters protected by mixed ligands [Au11(PPh3)8X2]+ (X = Cl, C ≡ CPh). ACS Omega 3, 6237 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Angel, L.A., Majors, L.T., Dharmaratne, A.C., Dass, A.: Ion mobility mass spectrometry of Au25(SCH2CH2Ph)18 nanoclusters. ACS Nano 4, 4691 (2010)

    Article  CAS  PubMed  Google Scholar 

  66. Fields-Zinna, C.A., Sampson, J.S., Crowe, M.C., Tracy, J.B., Parker, J.F., deNey, A.M., Muddiman, D.C., Murray, R.W.: Tandem mass spectrometry of thiolate-protected Au nanoparticles NaxAu25(SC2H4Ph)18−y(S(C2H4O)5CH3)y. J. Am. Chem. Soc. 131, 13844 (2009)

    Google Scholar 

  67. Yao, Q., Fung, V., Sun, C., Huang, S., Chen, T., Jiang, D., Lee, J.Y., Xie, J.: Revealing isoelectronic size conversion dynamics of metal nanoclusters by a noncrystallization approach. Nat. Commun. 9, 1979 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Liu, C., Lin, S., Pei, Y., Zeng, X.C.: Semiring chemistry of Au25(SR)18: fragmentation pathway and catalytic active site. J. Am. Chem. Soc. 135, 18067 (2013)

    Google Scholar 

  69. Chakraborty, P., Baksi, A., Khatun, E., Nag, A., Ghosh, A., Pradeep, T.: Dissociation of gas phase ions of atomically precise silver clusters reflects their solution phase stability. J. Phys. Chem. C 121, 10971 (2017)

    Article  CAS  Google Scholar 

  70. Zhang, H.-F., Stender, M., Zhang, R., Wang, C., Li, J., Wang, L.-S.: Toward the solution synthesis of the tetrahedral Au20 cluster. J. Phys. Chem. B 108, 12259 (2004)

    Article  CAS  Google Scholar 

  71. Tang, Q., Hu, G., Fung, V., Jiang, D.-E.: Insights into interfaces, stability, electronic properties, and catalytic activities of atomically precise metal nanoclusters from first principles. Acc. Chem. Res. 51, 2793 (2018)

    Article  CAS  PubMed  Google Scholar 

  72. Bertorelle, F., Russier-Antoine, I., Comby-Zerbino, C., Chirot, F., Dugourd, P., Brevet, P.-F., Antione, R.: Isomeric effect of mercaptobenzoic acids on the synthesis, stability, and optical properties of Au25(MBA)18 nanoclusters. ACS Omega 3, 15635 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bergeron, D.E., Hudgens, J.W.: Ligand dissociation and core fission from diphosphine-protected gold clusters. J. Phys. Chem. C 111, 8195 (2007)

    Article  CAS  Google Scholar 

  74. Shvartsburg, A.A., Smith, R.D.: Fundamentals of traveling wave ion mobility spectrometry. Anal. Chem. 80, 9689 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Daly, S., Choi, C.M., Zavras, A., Krstić, M., Chirot, F., Connell, T.U., Williams, S.J., Donnelly, P.S., Antoine, R., Giuliani, A., Bonačić-Koutecký, V., Dugourd, P., O’Hair, R.A.J.: Gas-phase structural and optical properties of homo- and heterobimetallic rhombic dodecahedral nanoclusters [Ag14–nCun(C ≡ CtBu)12X]+ (X = Cl and Br): ion mobility, VUV and UV spectroscopy, and DFT calculations. J. Phys. Chem. C 121, 10719 (2017)

    Article  CAS  Google Scholar 

  76. Ligare, M.R., Baker, E.S., Laskin, J., Johnson, G.E.: Ligand induced structural isomerism in phosphine coordinated gold clusters revealed by ion mobility mass spectrometry. Chem. Commun. 53, 7389 (2017)

    Article  CAS  Google Scholar 

  77. Baksi, A., Chakraborty, P., Bhat, S., Natarajan, G., Pradeep, T.: [Au25(SR)18] 2−2 : a noble metal cluster dimer in the gas phase. Chem. Commun. 52, 8397 (2016)

    Article  CAS  Google Scholar 

  78. Chakraborty, P., Baksi, A., Mudedla, S.K., Nag, A., Paramasivam, G., Subramanian, V., Pradeep, T.: Understanding proton capture and cation-induced dimerization of [Ag29(BDT)12]3− clusters by ion mobility mass spectrometry. Phys. Chem. Chem. Phys. 20, 7593 (2018)

    Article  CAS  PubMed  Google Scholar 

  79. Hirata, K., Chakraborty, P., Nag, A., Takano, S., Koyasu, K., Pradeep, T., Tsukuda, T.: Interconversions of structural isomers of [PdAu8(PPh3)8]2+ and [Au9(PPh3)8]3+ revealed by ion mobility mass spectrometry. J. Phys. Chem. C 122, 23123 (2018)

    Article  CAS  Google Scholar 

  80. Shvartsburg, A.A., Jarrold, M.F.: An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem. Phys. Lett. 261, 86 (1996)

    Article  CAS  Google Scholar 

  81. von Helden, G., Hsu, M.-T., Gotts, N., Bowers, M.T.: Carbon cluster cations with up to 84 atoms: structures, formation mechanism, and reactivity. J. Phys. Chem. 97, 8182 (1993)

    Google Scholar 

  82. Larriba, C., Hogan, C.J.: Ion mobilities in diatomic gases: measurement versus prediction with non-specular scattering models. J. Phys. Chem. A 117, 3887 (2013)

    Article  CAS  PubMed  Google Scholar 

  83. Schulz-Dobrick, M., Jansen, M.: Supramolecular intercluster compounds consisting of gold clusters and Keggin anions. Eur. J. Inorg. Chem. 2006, 4498 (2006)

    Article  CAS  Google Scholar 

  84. Hirata, K., Yamashita, K., Muramatsu, S., Takano, S., Ohshimo, K., Azuma, T., Nakanishi, R., Nagata, T., Yamazoe, S., Koyasu, K., Tsukuda, T.: Anion photoelectron spectroscopy of free [Au25(SC12H25)18]. Nanoscale 9, 13409 (2017)

    Article  CAS  PubMed  Google Scholar 

  85. Hirata, K., Kim, K., Nakamura, K., Kitazawa, H., Hayashi, S., Koyasu, K., Tsukuda, T.: Photoinduced thermionic emission from [M25(SR)18] (M = Au, Ag) revealed by anion photoelectron spectroscopy. J. Phys. Chem. C. 123, 13174 (2019)

    Google Scholar 

  86. Tofanelli, M.A., Salorinne, K., Ni, T.W., Malola, S., Newell, B., Phillips, B., Häkkinen, H., Ackerson, C.J.: Jahn-Teller effects in Au25(SR)18. Chem. Sci. 7, 1882 (2016)

    Article  CAS  PubMed  Google Scholar 

  87. Akola, J., Walter, M., Whetten, R.L., Häkkinen, H., Grönbeck, H.: On the structure of thiolate-protected Au25. J. Am. Chem. Soc. 130, 3756 (2008)

    Article  CAS  PubMed  Google Scholar 

  88. Kacprzak, K.A., Lehtovaara, L., Akola, J., Lopez-Acevedo, O., Häkkinen, H.: A density functional investigation of thiolate-protected bimetal PdAu24(SR) z18 clusters: doping the superatom complex. Phys. Chem. Chem. Phys. 11, 7123 (2009)

    Article  CAS  PubMed  Google Scholar 

  89. Wang, S., Li, Q., Kang, X., Zhu, M.: Customizing the structure, composition, and properties of alloy nanoclusters by metal exchange. Acc. Chem. Res. 51, 2784 (2018)

    Article  CAS  PubMed  Google Scholar 

  90. Hossain, S., Niihori, Y., Nair, L.V., Kumar, B., Kurashige, W., Negishi, Y.: Alloy clusters: precise synthesis and mixing effects. Acc. Chem. Res. 51, 3114 (2018)

    Article  CAS  PubMed  Google Scholar 

  91. Kim, K., Hirata, K., Nakamura, K., Kitazawa, H., Hayashi, S., Koyasu, K., Tsukuda, T.: Elucidating the doping effect on the electronic structure of thiolate-protected silver superatoms by photoelectron spectroscopy. Angew. Chem. Int. Ed. (2019) (in press)

    Google Scholar 

  92. Ganteför, G., Eberhardt, W., Weidele, H., Kreisle, D., Recknagel, E.: Energy dissipation in small clusters: direct photoemission, dissociation, and thermionic emission. Phys. Rev. Lett. 77, 4524 (1996)

    Article  PubMed  Google Scholar 

  93. Schacht, J., Gaston, N.: From the superatom model to a diverse array of super-elements: a systematic study of dopant influence on the electronic structure of thiolate-protected gold clusters. ChemPhysChem 17, 3237 (2016)

    Article  CAS  PubMed  Google Scholar 

  94. Yamazoe, S., Takano, S., Kurashige, W., Yokoyama, T., Nitta, K., Negishi, Y., Tsukuda, T.: Hierarchy of bond stiffnesses within icosahedral-based gold clusters protected by thiolates. Nat. Commun. 7, 10414 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hamouda, R., Bellina, B., Bertorelle, F., Compagnon, I., Antoine, R., Broyer, M., Rayane, D., Dugourd, P.: Electron emission of gas-phase [Au25(SG)18-6H]7− gold cluster and its action spectroscopy. J. Phys. Chem. Lett. 1, 3189 (2010)

    Article  CAS  Google Scholar 

  96. Black, D.M., Crittenden, C.M., Brodbelt, J.S., Whetten, R.L.: Ultraviolet photodissociation of selected gold clusters: ultraefficient unstapling and ligand stripping of Au25(pMBA)18 and Au36(pMBA)24. J. Phys. Chem. Lett. 8, 1283 (2017)

    Article  CAS  PubMed  Google Scholar 

  97. Wu, Z., Gayathri, C., Gil, R.R., Jin, R.: Probing the structure and charge state of glutathione-capped Au25(SG)18 clusters by NMR and mass spectrometry. J. Am. Chem. Soc. 131, 6535 (2009)

    Article  CAS  PubMed  Google Scholar 

  98. Beck, R.D., St. John, P., Homer, M.L., Whetten, R.L.: Impact-induced cleaving and melting of alkali-halide nanocrystals. Science 253, 879 (1991)

    Article  CAS  PubMed  Google Scholar 

  99. Johnson, G.E., Laskin, J.: Understanding ligand effects in gold clusters using mass spectrometry. Analyst 141, 3573 (2016)

    Article  CAS  PubMed  Google Scholar 

  100. Baksi, A., Harvey, S.R., Natarajan, G., Wysocki, V.H., Pradeep, T.: Possible isomers in ligand protected Ag11 cluster ions identified by ion mobility mass spectrometry and fragmented by surface induced dissociation. Chem. Commun. 52, 3805 (2016)

    Article  CAS  Google Scholar 

  101. Yamazoe, S., Tsukuda, T.: X-ray absorption spectroscopy on atomically precise metal clusters. Bull. Chem. Soc. Jpn. 92, 193 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Tsukuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koyasu, K., Hirata, K., Tsukuda, T. (2019). Characterization of Chemically Modified Gold/Silver Superatoms in the Gas Phase. In: Ebata, T., Fujii, M. (eds) Physical Chemistry of Cold Gas-Phase Functional Molecules and Clusters. Springer, Singapore. https://doi.org/10.1007/978-981-13-9371-6_8

Download citation

Publish with us

Policies and ethics