Skip to main content

Chirality Effects in Jet-Cooled Cyclic Dipeptides

  • Chapter
  • First Online:

Abstract

Jet-cooled bichromophoric cyclic dipeptides built on a diketopiperazine (DKP) ring are studied by combining conformer-specific vibrational spectroscopy with quantum chemical calculations. The dependence of the c-LL and c-LD dipeptides structure upon relative absolute configuration, L or D, of the residues is investigated for two residues: phenylalanine (Phe) and tyrosine (Tyr). A folded-extended structure is systematically observed for all systems, like in solution or in the solid. This structure is stabilized by NH…π and CH…π interactions and shows limited stereoselectivity; the only difference between c-LL and c-LD is the nature of the CH…π interaction—Cα…π in c-LD and Cβ…π in c-LL—and a stronger NH…π interaction in c-LD. For all the species studied, the electronic excitation and the charge in the radical cation are localized on the extended ring. The c-LL diastereomer of cyclo di-tyrosyl stands out by the existence of a stacked structure, in which formation of an OH…O hydrogen bond stabilizes parallel aromatic rings orientation. In this structure, the electronic excitation and the major part of the charge in the cation are localized on the H-bond donor. The OH…O H-bond is possible in c-LL and not c-LD, which explains the high stereoselectivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Borthwick, A.D.: 2,5-diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem. Rev. 112(7), 3641–3716 (2012). https://doi.org/10.1021/cr200398y

    Article  CAS  PubMed  Google Scholar 

  2. Basiuk, V.A., Gromovoy, T.Y.: The gas solid-phase 2,5-dioxopiperazine synthesis—cyclization of vaporous dipeptides on silica surface. Collect. Czech. Chem. Commun. 59(2), 461–466 (1994). https://doi.org/10.1135/cccc19940461

    Article  CAS  Google Scholar 

  3. Berset, J.-D., Ochsenbein, N.: Stability considerations of aspartame in the direct analysis of artificial sweeteners in water samples using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Chemosphere 88(5), 563–569 (2012). https://doi.org/10.1016/j.chemosphere.2012.03.030

    Article  CAS  PubMed  Google Scholar 

  4. Lin, S.Y., Wang, S.L.: Advances in simultaneous DSC-FTIR microspectroscopy for rapid solid-state chemical stability studies: some dipeptide drugs as examples. Adv. Drug Deliv. Rev. 64(5), 461–478 (2012). https://doi.org/10.1016/j.addr.2012.01.009

    Article  CAS  PubMed  Google Scholar 

  5. Sinha, S., Srivastava, R., De Clereq, E., Singh, R.K.: Synthesis and antiviral properties of arabino and ribonucleosides of 1,3-dideazaadenine, 4-nitro-1,3-dideazapurine and diketopiperazine. Nucleosides Nucleotides Nucl. Acids 23(12), 1815–1824 (2004). https://doi.org/10.1081/ncn-200040614

    Article  CAS  Google Scholar 

  6. Grande, F., Garofalo, A., Neamati, N.: Small molecules anti-HIV therapeutics targeting CXCR6. Curr. Pharm. Des. 14(4), 385–404 (2008)

    Article  CAS  PubMed  Google Scholar 

  7. Walchshofer, N., Sarciron, M.E., Garnier, F., Delatour, P., Petavy, A.F., Paris, J.: Anthelmintic activity of 3,6-dibenzyl-2,5-dioxopiperazine, cyclo(L-Phe-L-Phe). Amino Acids 12(1), 41–47 (1997). https://doi.org/10.1007/bf01373425

    Article  CAS  Google Scholar 

  8. Danda, H.: Essential factors in asymmetric hydrocyanation catalyzed by cyclo (-(R)-Phe-(R)-His-). Synlett 1991(04), 263–264 (1991)

    Article  Google Scholar 

  9. Tanaka, K., Mori, A., Inoue, S.: The cyclic dipeptide cyclo [(S)-phenylalanyl-(S)-histidyl] as a catalyst for asymmetric addition of hydrogen cyanide to aldehydes. J. Org. Chem. 55(1), 181–185 (1990)

    Article  CAS  Google Scholar 

  10. Jeon, J., Shell, M.S.: Self-assembly of cyclo-diphenylalanine peptides in vacuum. J. Phys. Chem. B 118(24), 6644–6652 (2014). https://doi.org/10.1021/jp501503x

    Article  CAS  PubMed  Google Scholar 

  11. Jaworska, M., Jeziorna, A., Drabik, E., Potrzebowski, M.J.: Solid state NMR study of thermal processes in nanoassemblies formed by dipeptides. J. Phys. Chem. C 116(22), 12330–12338 (2012). https://doi.org/10.1021/jp302616n

    Article  CAS  Google Scholar 

  12. Gross, E.: The Peptides Analysis. Modern Techniques of Conformational Structural, and Configurational Analysis. Elsevier, Synthesis, Biology (2012)

    Google Scholar 

  13. Sletten, E.: Conformation of cyclic dipeptides. Crystal and molecular structures of cyclo-d-alanyl-l-alanyl and cyclo-l-alanyl-l-alanyl (3,6-dimethylpiperazine-2,5-dione). J. Am. Chem. Soc. 92(1), 172–177 (1970). https://doi.org/10.1021/ja00704a028

  14. Carlson, K.L., Lowe, S.L., Hoffmann, M.R., Thomasson, K.A.: Theoretical UV circular dichroism of aliphatic cyclic dipeptides. J. Phys. Chem. A 109(24), 5463–5470 (2005). https://doi.org/10.1021/jp046580u

    Article  CAS  PubMed  Google Scholar 

  15. Milne, P.J., Oliver, D.W., Roos, H.M.: Cyclodipeptides—structure and conformation of cyclo(Tyrosyl Prolyl). J Cryst. Spectrosc. 22(6), 643–649 (1992). https://doi.org/10.1007/bf01160980

  16. Kopple, K.D., Marr, D.H. (1967) Conformation of cyclic peptides. The folding of cyclic dipeptides containing an aromatic side chain. J. Am. Chem. Soc. 89(24), 6193–6200 (1967). https://doi.org/10.1021/ja01000a035

  17. Lin, C.-F., Webb, L.E.: Crystal structures and conformations of the cyclic dipeptides cyclo-(Glycyl-L-tyrosyl) and cyclo-(L-seryl-L-tyrosyl) Monohydrate. J. Am. Chem. Soc. 95(20), 6803–6811 (1973). https://doi.org/10.1021/ja00801a046

    Article  CAS  Google Scholar 

  18. Benedetti, E., Marsh, R.E., Goodman, M.: Conformational studies on peptides. X-ray structure determinations of six N-methylated cyclic dipeptides derived from alanine, valine, and phenylalanine. J. Am. Chem. Soc. 98(21), 6676–6684 (1976). https://doi.org/10.1021/ja00437a041

  19. Gdaniec, M., Liberek, B.: Structure of cyclo(-L-Phenylalanyl-L-Phenylalanyl-). Acta Crystallogr. Section C-Crystal Struct. Commun. 42, 1343–1345 (1986). https://doi.org/10.1107/s0108270186092338

    Article  Google Scholar 

  20. Fleischhauer, J., Grotzinger, J., Kramer, B., Kruger, P., Wollmer, A., Woody, R.W., Zobel, E.: Calculation of the circular-dichroism spectrum of cyclo(L-Tyr-L-Tyr) based on a molecular-dynamics simulation. Biophys. Chem. 49(2), 141–152 (1994). https://doi.org/10.1016/0301-4622(93)e0065-d

    Article  CAS  PubMed  Google Scholar 

  21. Alata, I., Perez-Mellor, A., Ben Nasr, F., Scuderi, D., Steinmetz, V., Gobert, F., Jaidane, N.E., Zehnacker-Rentien, A.: Does the residues chirality modify the conformation of a cyclo-dipeptide? Vibrational spectroscopy of protonated cyclo-diphenylalanine in the gas phase. J. Phys. Chem. A 121(38), 7130–7138 (2017). https://doi.org/10.1021/acs.jpca.7b06159

    Article  CAS  PubMed  Google Scholar 

  22. BenNasr, F., Perez-Mellor, A., Alata, I., Lepere, V., Jaidane, N.-E., Zehnacker, A.: Stereochemistry-dependent hydrogen bonds stabilise stacked conformations in jet-cooled cyclic dipeptides: (LD) vs. (LL) cyclo tyrosine-tyrosine. Faraday Discuss. (2018). https://doi.org/10.1039/c8fd00079d

  23. Pérez Mellor, A., Alata, I., Zehnacker, A.: Conformational landscape of diastereomer cyclic dipeptide: IR spectroscopy of jet-cooled cyclo LTyr-LPro vs. cyclo LTyr-DPro. https://doi.org/10.1021/acs.jpcb.9b04529

  24. Perez-Mellor, A., Alata, I., Lepère, V., Zehnacker, A.: Chirality effects in the structures of jet-cooled bichromophoric dipeptides. J. Mol. Spectrosc. 349, 71–84 (2018)

    Article  CAS  Google Scholar 

  25. Perez-Mellor, A., Zehnacker, A.: Vibrational circular dichroism of a 2,5-diketopiperazine (DKP) peptide: evidence for dimer formation in cyclo LL or LD diphenylalanine in the solid state. Chirality 29(2), 89–96 (2017). https://doi.org/10.1002/chir.22674

    Article  CAS  PubMed  Google Scholar 

  26. Bouchet, A., Klyne, J., Ishiuchi, S.I., Dopfer, O., Fujii, M., Zehnacker, A.: Stereochemistry-dependent structure of hydrogen-bonded protonated dimers: the case of 1-amino-2-indanol. Phys. Chem. Chem. Phys. 20(18), 12430–12443 (2018). https://doi.org/10.1039/c8cp00787j

    Article  CAS  PubMed  Google Scholar 

  27. Bouchet, A., Klyne, J., Piani, G., Dopfer, O., Zehnacker, A.: Diastereo-specific conformational properties of neutral, protonated and radical cation forms of (1R,2S)-cis and (1R,2R)-trans amino-indanol by gas phase spectroscopy. Phys. Chem. Chem. Phys. 17, 25809–25821 (2015). https://doi.org/10.1039/C5CP00576K

    Article  CAS  PubMed  Google Scholar 

  28. Mahjoub, A., Chakraborty, A., Lepere, V., Le Barbu-Debus, K., Guchhait, N., Zehnacker, A.: Chirality-dependent hydrogen bond direction in jet-cooled (S)-1,2,3,4-tetrahydro-3-isoquinoline methanol (THIQM): IR-ion dip vibrational spectroscopy of the neutral and the ion. Phys. Chem. Chem. Phys. 11(25), 5160–5169 (2009)

    Article  CAS  PubMed  Google Scholar 

  29. Alauddin, M., Gloaguen, E., Brenner, V., Tardivel, B., Mons, M., Zehnacker-Rentien, A., Declerck, V., Aitken, D.J.: Intrinsic folding proclivities in cyclic-peptide building blocks: configuration and heteroatom effects analyzed by conformer-selective spectroscopy and quantum chemistry. Chem. Eur. J. 21(46), 16479–16493 (2015). https://doi.org/10.1002/chem.201501794

    Article  CAS  PubMed  Google Scholar 

  30. Zehnacker, A., Lahmani, F., Breheret, E., Desvergne, J.P., BouasLaurent, H., Germain, A., Brenner, V., Millie, P.: Laser induced fluorescence of jet-cooled non-conjugated bichromophores: bis-phenoxymethane and bis-2,6-dimethylphenoxymethane. Chem. Phys. 208(2), 243–257 (1996)

    Article  CAS  Google Scholar 

  31. Lahmani, F., Zehnacker, A., Desvergne, J.P., Bouas-Laurent, H., Colomes, M., Kruger, A.: Fluorescence emission in fluid solution and supersonic jet of symmetrical bisbenzenes incorporating a three membered flexible chain. J. Photochem. Photobiol. A Chem. 113(3), 203–212 (1998)

    Article  CAS  Google Scholar 

  32. Baquero, E.E., James III, W.H., Choi, T.H., Jordan, K.D., Zwier, T.S.: Single conformation spectroscopy of a flexible bichromophore: 3-(4-Hydroxyphenyl)-N-benzylpropionamide. J. Phys. Chem. A 112(44), 11115–11123 (2008). https://doi.org/10.1021/jp806787p

    Article  CAS  PubMed  Google Scholar 

  33. Buchanan, E.G., Gord, J.R., Zwier, T.S.: Solvent effects on vibronic coupling in a flexible bichromophore: electronic localization and energy transfer induced by a single water molecule. J. Phys. Chem. Lett. 4(10), 1644–1648 (2013). https://doi.org/10.1021/jz400641p

    Article  CAS  PubMed  Google Scholar 

  34. Pillsbury, N.R., Kidwell, N.M., Nebgen, B., Slipchenko, L.V., Douglass, K.O., Cable, J.R., Plusquellic, D.F., Zwier, T.S.: Vibronic coupling in asymmetric bichromophores: experimental investigation of diphenylmethane-d(5). J. Chem. Phys. 141(6). https://doi.org/10.1063/1.4892344

  35. Walsh, P.S., Buchanan, E.G., Gord, J.R., Zwier, T.S.: Binding water to a PEG-linked flexible bichromophore: IR spectra of diphenoxyethane-(H2O)(n) clusters, n = 2–4. J. Chem. Phys. 142(15). https://doi.org/10.1063/1.4917305

  36. Sen, A., Bouchet, A., Lepere, V., Le Barbu-Debus, K., Scuderi, D., Piuzzi, F., Zehnacker-Rentien, A.: Conformational analysis of quinine and its pseudo enantiomer quinidine: a combined jet-cooled spectroscopy and vibrational circular dichroism study. J. Phys. Chem. A 116(32), 8334–8344 (2012)

    Article  CAS  PubMed  Google Scholar 

  37. Mengesha, E.T., Zehnacker-Rentien, A., Sepiol, J., Kijak, M., Waluk, J.: Spectroscopic study of jet-cooled deuterated porphycenes: unusual isotopic effects on proton tunneling. J. Phys. Chem. B 119(6), 2193–2203 (2015). https://doi.org/10.1021/jp505553z

    Article  CAS  PubMed  Google Scholar 

  38. Gloaguen, E., de Courcy, B., Piquemal, J.P., Pilmé, J., Parisel, O., Pollet, R., Biswal, H.S., Piuzzi, F., Tardivel, B., Broquier, M., Mons, M.: Gas-phase folding of a two-residue model peptide chain: on the importance of an interplay between experiment and theory. J. Am. Chem. Soc. 132(34), 11860–11863. https://doi.org/10.1021/ja103996q

  39. Tanabe, S., Ebata, T., Fujii, M., Mikami, N.: OH stretching vibrations of phenol-(H2O)n(n = 1–3) complexes observed by IR-UV double-resonance spectroscopy. Chem. Phys. Lett. 215(4), 347–352 (1993)

    Article  CAS  Google Scholar 

  40. Pribble, R.N., Zwier, T.S.: Size-specific infrared-spectra of benzene-(H2O)(n) clusters (n = 1 through 7)—evidence for noncyclic (H2O)(n) structures. Science 265(5168), 75–79 (1994)

    Article  CAS  PubMed  Google Scholar 

  41. Ottiger, P., Leutwyler, S., Koppel, H.: Vibrational quenching of excitonic splittings in H-bonded molecular dimers: the electronic Davydov splittings cannot match experiment. J. Chem. Phys. 136(17). https://doi.org/10.1063/1.4705119

  42. Balmer, F.A., Kopec, S., Koppel, H., Leutwyler, S.: Excitonic splitting and vibronic coupling analysis of the m-Cyanophenol dimer. J. Phys. Chem. A 121(1), 73–87 (2017). https://doi.org/10.1021/acs.jpca.6b10416

    Article  CAS  PubMed  Google Scholar 

  43. Buchanan, E.G., Walsh, P.S., Plusquellic, D.F., Zwier, T.S.: Excitonic splitting and vibronic coupling in 1,2-diphenoxyethane: conformation-specific effects in the weak coupling limit. J. Chem. Phys. 138(20). https://doi.org/10.1063/1.4807300

  44. MacroModel version 9.8. ed. Schrödinger, LLC, New York, NY (2010)

    Google Scholar 

  45. Grimme, S., Antony, J., Ehrlich, S., Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15). https://doi.org/10.1063/1.3382344

  46. Grimme, S., Ehrlich, S., Goerigk, L.: Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32(7), 1456–1465 (2011). https://doi.org/10.1002/jcc.21759

    Article  CAS  PubMed  Google Scholar 

  47. Frisch, M.J., Pople, J.A., Binkley, J.S.: Self-consistent molecular-orbital methods. 25. Supplementary functions for Gaussian-basis sets. J. Chem. Phys. 80(7), 3265–3269. https://doi.org/10.1063/1.447079

  48. Lepere, V., Le Barbu-Debus, K., Clavaguera, C., Scuderi, D., Piani, G., Simon, A.-L., Chirot, F., MacAleese, L., Dugourd, P., Zehnacker, A.: Chirality-dependent structuration of protonated or sodiated polyphenylalanines: IRMPD and ion mobility studies. Phys. Chem. Chem. Phys. 18(3), 1807–1817 (2016). https://doi.org/10.1039/c5cp06768e

    Article  CAS  PubMed  Google Scholar 

  49. Reed, A.E., Curtiss, L.A., Weinhold, F.: Intermolecular interactions for a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88(6), 899–926 (1988)

    Article  CAS  Google Scholar 

  50. Chai, J.D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10(44), 6615–6620 (2008). https://doi.org/10.1039/b810189b

    Article  CAS  PubMed  Google Scholar 

  51. Jacquemin, D., Perpete, E.A., Ciofini, I., Adamo, C.: Assessment of the omega B97 family for excited-state calculations. Theoret. Chem. Acc. 128(1), 127–136 (2011). https://doi.org/10.1007/s00214-010-0783-x

    Article  CAS  Google Scholar 

  52. Sen, A., Lepere, V., Le Barbu-Debus, K., Zehnacker, A.: How do pseudoenantiomers structurally differ in the gas phase? An IR/UV spectroscopy study of jet-cooled hydroquinine and hydroquinidine. Chemphyschem. Eur. J. Chem. Phys. Phys. Chem. 14(15), 3559–3568 (2013). https://doi.org/10.1002/cphc.201300643

    Article  CAS  Google Scholar 

  53. Johnson, R.D.: NIST computational chemistry comparison and benchmark database NIST standard reference database number 101. http://cccbdb.nist.gov/ (2018). Accessed 15 Jan 2019

  54. Gloaguen, E., Mons, M.: Isolated neutral peptides. In: Rijs, A.M., Oomens, J. (eds) Gas-phase IR spectroscopy and structure of biological molecules. Topics in Current Chemistry-Series, vol. 364, pp. 225–270 (2015). https://doi.org/10.1007/128_2014_580

  55. Plowright, R.J., Gloaguen, E., Mons, M.: Compact folding of isolated four-residue neutral peptide chains: H-bonding patterns and entropy effects. ChemPhysChem 12(10), 1889–1899 (2011). https://doi.org/10.1002/cphc.201001023

    Article  CAS  PubMed  Google Scholar 

  56. Gerhards, M., Unterberg, C.: Structures of the protected amino acid Ac-Phe-OMe and its dimer: a beta-sheet model system in the gas phase. Phys. Chem. Chem. Phys. 4(10), 1760–1765 (2002). https://doi.org/10.1039/b110029g

    Article  CAS  Google Scholar 

  57. Bloino, J., Barone, V.: A second-order perturbation theory route to vibrational averages and transition properties of molecules: general formulation and application to infrared and vibrational circular dichroism spectroscopies. J. Chem. Phys. 136(12), 124108 (2012). https://doi.org/10.1063/1.3695210

    Article  CAS  PubMed  Google Scholar 

  58. Bloino, J., Baiardi, A., Biczysko, M.: Aiming at an accurate prediction of vibrational and electronic spectra for medium-to-large molecules: an overview. Int. J. Quantum Chem. 116(21), 1543–1574 (2016). https://doi.org/10.1002/qua.25188

    Article  CAS  Google Scholar 

  59. Bloino, J., Biczysko, M., Barone, V.: Anharmonic effects on vibrational spectra intensities: infrared, Raman, vibrational circular dichroism, and Raman optical activity. J. Phys. Chem. A 119(49), 11862–11874 (2015). https://doi.org/10.1021/acs.jpca.5b10067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X.J., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.S.: Gaussian 09, Revision D.01. Gaussian Inc., Wallingford, CT (2009)

    Google Scholar 

  61. Urago, H., Suga, T., Hirata, T., Kodama, H., Unno, M.: Raman optical activity of a cyclic dipeptide analyzed by quantum chemical calculations combined with molecular dynamics simulations. J. Phys. Chem. B 118(24), 6767–6774 (2014). https://doi.org/10.1021/jp503874z

    Article  CAS  PubMed  Google Scholar 

  62. Inokuchi, Y., Kobayashi, Y., Ito, T., Ebata, T.: Conformation of L-tyrosine studied by fluorescence-detected UV-UV and IR-UV double-resonance spectroscopy. J. Phys. Chem. A 111(17), 3209–3215 (2007). https://doi.org/10.1021/jp070163a

    Article  CAS  PubMed  Google Scholar 

  63. Shimozono, Y., Yamada, K., Ishiuchi, S-i, Tsukiyama, K., Fujii, M.: Revised conformational assignments and conformational evolution of tyrosine by laser desorption supersonic jet laser spectroscopy. Phys. Chem. Chem. Phys. 15(14), 5163–5175 (2013). https://doi.org/10.1039/c3cp43573c

    Article  CAS  PubMed  Google Scholar 

  64. James III, W.H., Buchanan, E.G., Guo, L., Geman, S.H., Zwier, T.S.: Competition between amide stacking and intramolecular H bonds in gamma-peptide derivatives: controlling nearest-neighbor preferences. J. Phys. Chem. A 115(43), 11960–11970 (2011). https://doi.org/10.1021/jp2081319

    Article  CAS  PubMed  Google Scholar 

  65. Martinez, S.J., Alfano, J.C., Levy, D.H.: The electronic spectroscopy of the amino-acids tyrosine and phenylalanine in a supersonic jet. J. Mol. Spectrosc. 156(2), 421–430 (1992)

    Article  CAS  Google Scholar 

  66. Lee, K.T., Sung, J., Lee, K.J., Kim, S.K., Park, Y.D.: Resonant two-photon ionization study of jet-cooled amino acid: L-phenylalanine and its monohydrated complex. J. Chem. Phys. 116(19), 8251–8254 (2002). https://doi.org/10.1063/1.1477452

    Article  CAS  Google Scholar 

  67. Hashimoto, T., Takasu, Y., Yamada, Y., Ebata, T.: Anomalous conformer dependent S-1 lifetime of L-phenylalanine. Chem. Phys. Lett. 421(1–3), 227–231 (2006). https://doi.org/10.1016/j.cplett.2006.01.074

    Article  CAS  Google Scholar 

  68. Boyarkin, O.V., Mercier, S.R., Kamariotis, A., Rizzo, T.R.: Electronic spectroscopy of cold, protonated tryptophan and tyrosine. J. Am. Chem. Soc. 128(9), 2816–2817 (2006). https://doi.org/10.1021/ja058383u

    Article  CAS  PubMed  Google Scholar 

  69. Ishiuchi, S., Wako, H., Kato, D., Fujii, M.: High-cooling-efficiency cryogenic quadrupole ion trap and UV-UV hole burning spectroscopy of protonated tyrosine. J. Mol. Spectrosc. 332, 45–51 (2017). https://doi.org/10.1016/j.jms.2016.10.011

    Article  CAS  Google Scholar 

  70. Abo-Riziq, A.G., Crews, B., Bushnell, J.E., Callahan, M.P., De Vries, M.S.: Conformational analysis of cyclo(Phe-Ser) by UV-UV and IR-UV double resonance spectroscopy and ab initio calculations. Mol. Phys. 103(11–12), 1491–1495 (2005). https://doi.org/10.1080/00268970500095923

    Article  CAS  Google Scholar 

  71. Abo-Riziq, A., Grace, L., Crews, B., Callahan, M.P., van Mourik, T., de Vries, M.S.: Conformational structure of Tyrosine, Tyrosyl-glycine, and Tyrosyl-glycyl-glycine by double resonance spectroscopy. J. Phys. Chem. A 115(23), 6077–6087 (2011). https://doi.org/10.1021/jp110601w

    Article  CAS  PubMed  Google Scholar 

  72. Seurre, N., Sepiol, J., Lahmani, F., Zehnacker-Rentien, A., Le Barbu-Debus, K.: Vibrational study of the S-0 and S-1 states of 2-naphthyl-1-ethanol/(water)(2) and 2-naphthyl-1-ethanol/(methanol)(2) complexes by IR/UV double resonance spectroscopy. Phys. Chem. Chem. Phys. 6(19), 4658–4664 (2004)

    Article  CAS  Google Scholar 

  73. Loquais, Y., Gloaguen, E., Habka, S., Vaquero-Vara, V., Brenner, V., Tardivel, B., Mons, M.: Secondary structures in Phe-containing isolated dipeptide chains: laser spectroscopy vs quantum chemistry. J. Phys. Chem. A 119(23), 5932–5941 (2015). https://doi.org/10.1021/jp509494c

    Article  CAS  PubMed  Google Scholar 

  74. Scutelnic, V., Prlj, A., Zabuga, A., Corminboeuf, C., Rizzo, T.R.: Infrared spectroscopy as a probe of electronic energy transfer. J. Phys. Chem. Lett. 9(12), 3217–3223 (2018). https://doi.org/10.1021/acs.jpclett.8b01216

    Article  CAS  PubMed  Google Scholar 

  75. Fujii, A., Sawamura, T., Tanabe, S., Ebata, T., Mikami, N.: Infrared dissociation spectroscopy of the OH stretching vibration of phenol-rare gas van der Waals cluster ions. Chem. Phys. Lett. 225(1–3), 104–107 (1994)

    Article  CAS  Google Scholar 

  76. Aroulanda, C., Merlet, D., Courtieu, J., Lesot, P.: NMR experimental evidence of the differentiation of enantiotopic directions in C-s and C-2v molecules using partially oriented, chiral media. J. Am. Chem. Soc. 123(48), 12059–12066 (2001). https://doi.org/10.1021/ja011685l

    Article  CAS  PubMed  Google Scholar 

  77. Emsley, J.W., Lesot, P., Merlet, D.: The orientational order and conformational distributions of the two enantiomers in a racemic mixture of a chiral, flexible molecule dissolved in a chiral nematic liquid crystalline solvent. Phys. Chem. Chem. Phys. 6(3), 522–530 (2004). https://doi.org/10.1039/b312512b

    Article  CAS  Google Scholar 

  78. Lahmani, F., Douhal, A., Breheret, E., Zehnacker-Rentien, A.: Solvation effects in jet-cooled 7-hydroxyquinoline. Chem. Phys. Lett. 220(3–5), 235–242 (1994)

    Article  CAS  Google Scholar 

  79. Bach, A., Coussan, S., Muller, A., Leutwyler, S.: Water-chain clusters: vibronic spectra of 7-hydroxyquinoline center dot(H2O)2. J. Chem. Phys. 112(3), 1192–1203 (2000)

    Article  CAS  Google Scholar 

  80. Klyne, J., Bouchet, A., Ishiuchi, S., Fujii, M., Schneider, M., Baldauf, C., Dopfer, O.: Probing chirality recognition of protonated glutamic acid dimers by gas-phase vibrational spectroscopy and first-principles simulations. Phys. Chem. Chem. Phys. 20(45), 28452–28464 (2018). https://doi.org/10.1039/c8cp05855e

    Article  CAS  PubMed  Google Scholar 

  81. Fujihara, A., Sato, T., Hayakawa, S.: Enantiomer-selective ultraviolet photolysis of temperature-controlled protonated tryptophan on a chiral crown ether in the gas phase. Chem. Phys. Lett. 610, 228–233 (2014). https://doi.org/10.1016/j.cplett.2014.07.045

    Article  CAS  Google Scholar 

  82. Matile, S., Berova, N., Nakanishi, K., Novkova, S., Philipova, I., Blagoev, B.: Porphyrins-powerful chromophores for structural studies by exciton-coupled circular-dichroism. J. Am. Chem. Soc. 117(26), 7021–7022 (1995). https://doi.org/10.1021/ja00131a033

    Article  CAS  Google Scholar 

  83. Hong, A., Choi, C.M., Eun, H.J., Jeong, C., Heo, J., Kim, N.J.: Conformation-specific circular dichroism spectroscopy of cold. Isolated Chiral Molecules. Angewandte Chemie-International Edition 53(30), 7805–7808 (2014). https://doi.org/10.1002/anie.201403916

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Zehnacker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pérez-Mellor, A., Zehnacker, A. (2019). Chirality Effects in Jet-Cooled Cyclic Dipeptides. In: Ebata, T., Fujii, M. (eds) Physical Chemistry of Cold Gas-Phase Functional Molecules and Clusters. Springer, Singapore. https://doi.org/10.1007/978-981-13-9371-6_3

Download citation

Publish with us

Policies and ethics