Skip to main content

Modulation of Fungal Metabolome by Biotic Stress

  • Chapter
  • First Online:

Abstract

Filamentous fungi are ubiquitous microorganisms well known as one of the major sources of pharmaceuticals and other biotechnologically useful compounds. The amazing structural diversity of fungal secondary metabolites results from years of coevolution that selected unique mechanisms of resistance and communication in specific environments or in biotic relationships. Metabolite production is controlled by transcriptional regulation, and the production of carbon-based compounds is usually restricted to opportune situations. The dynamic nature of fungal metabolism consists on a complex in vivo process regulated by interactions between gene networks, but it can be modulated by generation of in vitro biotic stress. Both in vivo and in vitro interactions trigger activation of cryptic genes leading to changes in the fungal metabolic expression such as elicitation of new metabolite production, increase or minimization of the biosynthetic pathways, or even inhibition of some metabolic routes. While biosynthesis diversification and yield improvement are interesting tools for producing bioactive compounds, metabolite suppression can be used as a biotechnologically useful tool for decreasing toxin production. This review discusses the production of secondary metabolites by filamentous fungi under different natural biotic stresses caused by algae, bacteria, plants, and other organisms and the in vitro mimetization of these interactions leading to cryptic gene expression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abanda-Nkpwatt D, Krimm U, Coiner HA, Schreiber L, Schwab W (2006) Plant volatiles can minimize the growth suppression of epiphytic bacteria by the phytopathogenic fungus Botrytis cinerea in co-culture experiments. Environ Exp Bot 56:108–119

    Article  CAS  Google Scholar 

  • Aguieiras ECG, Cavalcanti-Oliveira ED, Freire DMG (2015) Current status and new developments of biodiesel production using fungal lipases. Fuel 159:52–67

    Article  CAS  Google Scholar 

  • Aisyah S, Gruppen H, Madzora B, Vincken JP (2013) Modulation of isoflavonoid composition of Rhizopus oryzae elicited soybean (Glycine max) seedlings by light and wounding. J Agric Food Chem 61:8657–8667

    Article  CAS  PubMed  Google Scholar 

  • Aisyah S, Gruppen H, Slager M, Helmink B, Vincken JP (2015) Modification of prenylated stilbenoids in peanut (Arachis hypogaea) seedlings by the same fungi that elicited them: the fungus strikes back. J Agric Food Chem 63:9260–9268

    Article  CAS  PubMed  Google Scholar 

  • Albert S, Chauhan D, Pandya B, Padhiar A (2011) Screening of Trichoderma spp. as potential fungal partner in co-culturing with white rot fungi for efficient bio-pulping. Global J Biotech Biochem 6:95–101

    CAS  Google Scholar 

  • Andrade-Domínguez A, Salazar E, Vargas-Lagunas MC, Kolter R, Encarnación S (2014) Eco-evolutionary feedbacks drive species interactions. ISME J 8:1041–1054

    Article  PubMed  Google Scholar 

  • Aptroot A, Cáceres MES (2014) New lichen species from termite nests in rainforest in Brazilian Rondônia and adjacent Amazonas. Lichenologist 46:365–372

    Article  Google Scholar 

  • Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD, Gugger P, Way A, Hofstetter V, Kauff F, Lutzoni F (2009) A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst Biol 58:283–297

    Article  PubMed  Google Scholar 

  • Bačkorová M, Jendželovský R, Kello M, Bačkor M, Mikeš J, Fedoročko P (2012) Lichen secondary metabolites are responsible for induction of apoptosis in HT-29 and A2780 human cancer cell lines. Toxicol In Vitro 26:462–468

    Article  PubMed  CAS  Google Scholar 

  • Baldi A, Jain A, Gupta N (2008) Co-culture of arbuscular mycorrhiza-like fungi (Piriformospora indica and Sebacina vermifera) with plant cells of Linum album for enhanced production of podophyllotoxins: a first report. Biotechnol Lett 30:1671–1677

    Article  CAS  PubMed  Google Scholar 

  • Baldi A, Srivastava AK, Bisaria VS (2009) Fungal elicitors for enhanced production of secondary metabolites in plant cell suspension cultures. In: Varma A, Kharkwal AC (eds) Symbiotic Fungi. Springer, Berlin/Heidelberg, pp 373–380

    Chapter  Google Scholar 

  • Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH (2008) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506

    Article  CAS  PubMed  Google Scholar 

  • Bertrand S, Schumpp O, Bohni N, Bujard A, Azzollini A, Monod M, Gindro K, Wolfender JL (2013a) Detection of metabolite induction in fungal co-cultures on solid media by high-throughput differential ultra-high pressure liquid chromatography-time-of-flight mass spectrometry fingerprinting. J Chromatogr A 1292:219–228

    Article  CAS  PubMed  Google Scholar 

  • Bertrand S, Schumpp O, Bohni N, Monod M, Gindro K, Wolfender JL (2013b) De novo production of metabolites by fungal co-culture of Trichophyton rubrum and Bionectria ochroleuca. J Nat Prod 76:1157–1165

    Article  CAS  PubMed  Google Scholar 

  • Bertrand S, Azzollini A, Schumpp O, Bohni N, Schrenzel J, Monod M, Gindro K, Wolfender JL (2014a) Multi-well fungal co-culture for de novo metabolite-induction in time-series studies based on untargeted metabolomics. Mol BioSyst 10:2289–2298

    Article  CAS  PubMed  Google Scholar 

  • Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender JL (2014b) Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 32:1180–1204

    Article  CAS  PubMed  Google Scholar 

  • Bjerke JW, Elvebakk A, Domínguez E, Dahlback A (2005) Seasonal trends in usnic acid concentrations of Arctic, alpine and Patagonian populations of the lichen Flavocetraria nivalis. Phytochemistry 66:337–344

    Article  CAS  PubMed  Google Scholar 

  • Bohni N, Hofstetter V, Gindro K, Buyck B, Schumpp O, Bertrand S, Monod M, Wolfender JL (2016) Production of fusaric acid by Fusarium spp. in pure culture and in solid medium co-cultures. Molecules 21:370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boustie J, Grube M (2005) Lichens – a promising source of bioactive secondary metabolites. Plant Genet Resour 3:273–287

    Article  CAS  Google Scholar 

  • Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11:21–32

    Article  CAS  PubMed  Google Scholar 

  • Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites – strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22

    Article  CAS  PubMed  Google Scholar 

  • Brakhage AA, Thön M, Spröte P, Scharf DH, Al-Abdallah Q, Wolke SM, Hortschansky P (2009) Aspects on evolution of fungal β-lactam biosynthesis gene clusters and recruitment of trans-acting factors. Phytochemistry 70:1801–1811

    Article  CAS  PubMed  Google Scholar 

  • Bugni TS, Andjelic CD, Pole AR, Rai P, Ireland CM, Barrows LR (2009) Biologically active components of a Papua New Guinea analgesic and anti-inflammatory lichen preparation. Fitoterapia 80:270–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:447–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Candan M, Yılmaz M, Tay T, Aysen A, Türk Ö (2007) Antimicrobial activity of extracts of the lichen Parmelia sulcata and its salazinic acid constituent. Z Naturforsch C 62:619–621

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Kuang Y, Splivallo R, Chatterjee P, Karlovsky P (2016) Interactions among filamentous fungi Aspergillus niger, Fusarium verticillioides and Clonostachys rosea: fungal biomass, diversity of secreted metabolites and fumonisin production. BMC Microbiol 16:1–13

    Article  CAS  Google Scholar 

  • Chen H, Daletos G, Abdel-Aziz MS, Thomy D, Dai H, Brotz-Oesterhelt H, Lin W, Proksch P (2015) Inducing secondary metabolite production by the soil-dwelling fungus Aspergillus terreus through bacterial co-culture. Phytochem Lett 12:35–41

    Article  CAS  Google Scholar 

  • Cheng YF, Jin W, Mao SY, Zhu WY (2013) Production of citrate by anaerobic fungi in the presence of co-culture methanogens as revealed by 1H NMR spectrometry. Asian-Australas J Anim Sci 26:1416–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cocchietto M, Skert N, Nimis P, Sava G (2002) A review on usnic acid, an interesting natural compound. Naturwissenschaften 89:137–146

    Article  CAS  PubMed  Google Scholar 

  • Cueto M, Jensen PR, Kauffman C, Fenical W, Lobkovsky E, Clardy J (2001) Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge. J Nat Prod 64:1444–1446

    Article  CAS  PubMed  Google Scholar 

  • da Silva RA, Polonio JC, Costa AT, Santos CM, Rhoden SA, Azevedo JL, Pamphile JA (2018) Bioprospection of culturable endophytic fungi associated with the ornamental plant Pachystachys lutea. Curr Microbiol 75:588–596

    Article  CAS  Google Scholar 

  • Davies KM, Schwinn KE (2003) Transcriptional regulation of secondary metabolism. Funct Plant Biol 30:913–925

    Article  CAS  PubMed  Google Scholar 

  • Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Pietro AD, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  PubMed  PubMed Central  Google Scholar 

  • Denardi-Souza T, Massarolo KC, Tralamazza SM, Badiale-Furlong E (2018) Monitoring of fungal biomass changed by Rhizopus oryzae in relation to amino acid and essential fatty acids profile in soybean meal, wheat and rice. CYTA – J Food 16:156–164

    Article  CAS  Google Scholar 

  • Dighton J, White JF (2016) The fungal community: its organization and role in the ecosystem, 4th edn. CRC Press Taylor and Francis, Boca Raton, p 597

    Google Scholar 

  • Dimijian GG (2000) Evolving together: the biology of symbiosis, part 1. Proc (Bayl Univ Med Cent) 13:217–226

    Article  CAS  Google Scholar 

  • Divakar PK, Crespo A, Wedin M, Leavitt SD, Hawksworth DL, Myllys L, McCune B, Randlane T, Bjerke JW et al (2015) Evolution of complex symbiotic relationships in a morphologically derived family of lichen-forming fungi. New Phytol 208:1217–1226

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  CAS  PubMed  Google Scholar 

  • Douglas AE (2010) The symbiotic habit. Princeton University Press, Princeton, p 202

    Google Scholar 

  • Ebrahim W, El-Neketi M, Lewald LI, Orfali RS, Lin W, Rehberg N, Kalscheuer R, Daletos G, Proksch P (2016) Metabolites from the fungal endophyte Aspergillus austroafricanus in axenic culture and in fungal−bacterial mixed cultures. J Nat Prod 79:914–922

    Article  CAS  PubMed  Google Scholar 

  • Einarsdóttir E, Groeneweg J, Björnsdóttir G, Harðardottir G, Omarsdóttir S, Ingólfsdóttir K, Ögmundsdóttir H (2010) Cellular mechanisms of the anticancer effects of the lichen compound usnic acid. Planta Med 76:969–974

    Article  PubMed  CAS  Google Scholar 

  • Eisenreich W, Knispel N, Beck A (2011) Advanced methods for the study of the chemistry and the metabolism of lichens. Phytochem Rev 10:445–456

    Article  CAS  Google Scholar 

  • Eskin NAM, Shahidi F (2013) Biochemistry of foods, 3rd edn. Academic, Amsterdam, p 584

    Google Scholar 

  • Falconer RE, Bown JL, White NA, Crawford JW (2008) Modelling interactions in fungi. J R Soc Interface 5:603–615

    Article  PubMed  Google Scholar 

  • Fang W, Azimzadeh P, Leger RJ (2012) Strain improvement of fungal insecticides for controlling insect pests and vector-borne diseases. Curr Opin Microbiol 15:232–238

    Article  PubMed  Google Scholar 

  • Fillinger S, Elad Y (2016) Botrytis – the fungus, the pathogen and its Management in Agricultural Systems. Springer, Cham, p 486

    Book  Google Scholar 

  • Fox EM, Howlett BJ (2008) Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11:481–487

    Article  CAS  PubMed  Google Scholar 

  • Francolini I, Norris P, Piozzi A, Donelli G, Stoodley P (2004) Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob Agents Chemother 48:4360–4365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res 112:231–240

    Article  CAS  PubMed  Google Scholar 

  • George TS, Dou D, Wang X (2016) Plant–microbe interactions: manipulating signals to enhance agricultural sustainability and environmental security. Plant Growth Regul 80:1–3

    Article  CAS  Google Scholar 

  • Ghosh S, Chowdhury R, Bhattacharya P (2016) Mixed consortia in bioprocesses: role of microbial interactions. Appl Microbiol Biotechnol 100:4283–4295

    Article  CAS  PubMed  Google Scholar 

  • Giri CC, Zaheer M (2016) Chemical elicitors versus secondary metabolite production in vitro using plant cell, tissue and organ cultures: recent trends and a sky eye view appraisal. Plant Cell Tissue Organ Cult 126:1–18

    Article  CAS  Google Scholar 

  • Gloer JB (1995) The chemistry of fungal antagonismo and defense. Can J Bot 73:1265–1274

    Article  Google Scholar 

  • Goel M, Dureja P, Rani A, Uniyal PL, Laatsch H (2011) Isolation, characterization and antifungal activity of major constituents of the himalayan lichen Parmelia reticulata Tayl. J Agric Food Chem 59:2299–2307

    Article  CAS  PubMed  Google Scholar 

  • Grayer RJ, Kokubun T (2001) Plant-fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants. Phytochemistry 56:253–263

    Article  CAS  PubMed  Google Scholar 

  • Grube M, Berg G (2010) Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biol Rev 23:72–85

    Article  Google Scholar 

  • Grube M, Cernava T, Soh J, Fuchs S, Aschenbrenner I, Lassek C, Wegner U, Becher D, Riedel K, Sensen CW, Berg G (2015) Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J 9:412–424

    Article  CAS  PubMed  Google Scholar 

  • Hajong S, Kumaria S, Tandon P (2013) Compatible fungi, suitable medium, and appropriate developmental stage essential for stable association of Dendrobium chrysanthum. J Basic Microbiol 53:1025–1033

    Article  CAS  PubMed  Google Scholar 

  • Hertweck C (2009) The biosynthetic logic of Polyketide diversity. Angew Chem Int Ed Engl 48:4688–4716

    Article  CAS  PubMed  Google Scholar 

  • Hewage RT, Aree T, Mahidol C, Ruchirawat S, Kittakoop P (2014) One strain-many compounds (OSMAC) method for production of polyketides, azaphilones, and an isochromanone using the endophytic fungus Dothideomycete sp. Phytochemistry 108:87–94

    Article  CAS  PubMed  Google Scholar 

  • Ingólfsdóttir K (2002) Usnic acid. Phytochemistry 61:729–736

    Article  PubMed  Google Scholar 

  • Jiao J, Gai Q-Y, Wang W, Zang Y-P, Niu L-L, Fu Y-J, Wang X (2018) Remarkable enhancement of flavonoid production in a co-cultivation system of Isatis tinctoria L. hairy root cultures and immobilized Aspergillus niger. Ind Crop Prod 112:252–261

    Article  CAS  Google Scholar 

  • Jin L, Quan C, Hou X, Fan S (2016) Potential pharmacological resources: natural bioactive compounds from marine-derived fungi. Mar Drugs 76:1–25

    Article  CAS  Google Scholar 

  • Kaasalainen U, Fewer DP, Jokela J, Wahlsten M, Sivonen K, Rikkinen J (2012) Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis. Proc Natl Acad Sci U S A 109:5886–5891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kampa A, Gagunashvili AN, Gulder TA, Morinaka BI, Daolio C, Godejohann M, Miao VP, Piel J, Andrésson Ó (2013) Metagenomic natural product discovery in lichen provides evidence for a family of biosynthetic pathways in diverse symbioses. Proc Natl Acad Sci U S A 110:129–137

    Article  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism - from biochemistry to genomics. Nat Rev Microbiol 3:937–947

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Vujanovic V (2017) Biodegradation and biodetoxification of Fusarium mycotoxins by Sphaerodes mycoparasitica. AMB Express 7:1–9

    Article  CAS  Google Scholar 

  • Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087

    Article  CAS  PubMed  Google Scholar 

  • König CC, Scherlach K, Schroeckh V, Horn F, Nietzsche S, Brakhage AA, Hertweck C (2013) Bacterium induces cryptic meroterpenoid pathway in the pathogenic fungus Aspergillus fumigatus. Chembiochem 14:938–942

    Article  PubMed  CAS  Google Scholar 

  • Kowalski M, Hausner G, Piercey-normore MD (2011) Bioactivity of secondary metabolites and thallus extracts from lichen fungi. Mycoscience 52:413–418

    Article  CAS  Google Scholar 

  • Kroymann J (2011) Natural diversity and adaptation in plant secondary metabolism. Curr Opin Plant Biol 14:246–251

    Article  CAS  PubMed  Google Scholar 

  • Kümmritz S, Louis M, Haas C, Oehmichen F, Gantz S, Delenk H, Steudler S, Bley T, Steingroewer J (2016) Fungal elicitors combined with a sucrose feed significantly enhance triterpene production of a Salvia fruticosa cell suspension. Appl Microbiol Biotechnol 100:7071–7082

    Article  PubMed  CAS  Google Scholar 

  • Kurosawa K, Ghiviriga I, Sambandan TG, Lessard PA, Barbara JE, Rha C, Sinskey AJ (2008) Rhodostreptomycins, antibiotics biosynthesized following horizontal gene transfer from Streptomyces padanus to Rhodococcus fascians. J Am Chem Soc 130:1126–1127

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wang J, Li J, Liu D, Li H, Gao W, Li J, Liu S (2015) Aspergillus niger enhance bioactive compounds biosynthesis as well as expression of functional genes in adventitious roots of Glycyrrhiza uralensis Fisch. Appl Biochem Biotechnol 178:576–593

    Article  PubMed  CAS  Google Scholar 

  • Li J, Liu S, Wang J, Li J, Liu D, Li J, Gao W (2016) Fungal elicitors enhance ginsenosides biosynthesis, expression of functional genes as well as signal molecules accumulation in adventitious roots of Panax ginseng CA Mey. J Biotechnol 239:106–114

    Article  CAS  PubMed  Google Scholar 

  • Ligon BL (2004) Penicillin: its discovery and early development. Semin Pediatr Infect Dis 15:52–57

    Article  PubMed  Google Scholar 

  • Lima GS, Rocha AM, Santos GF, Silva AF, Marriel IE, Takahashi JA (2018a) Metabolic response of Aspergillus sydowii to OSMAC modulation produces acetylcholinesterase inhibitors. Phytochem Lett 24:39–45

    Article  CAS  Google Scholar 

  • Lima MTNS, dos Santos LB, Bastos RW, Nicoli JR, Takahashi JA (2018b) Antimicrobial activity and acetylcholinesterase inhibition by extracts from chromatin modulated fungi. Braz J Microbiol 49:169–176

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Ashforth E, Ren B, Song F, Dai H, Liu M, Wang J, Xie Q, Zhang L (2010) Bioprospecting microbial natural product libraries from the marine environment for drug discovery. J Antibiot 63:415–422

    Article  CAS  Google Scholar 

  • Luo H, Li C, Kim JC, Liu Y, Jung JS, Koh YJ, Hur J-S (2013) Biruloquinone, an acetylcholinesterase inhibitor produced by lichen-forming fungus Cladonia macilenta. J Microbiol Biotechnol 23:161–166

    Article  CAS  PubMed  Google Scholar 

  • Magan N, Aldred D (2007) Why do fungi produce mycotoxins? In: Dijksterhuis J, Samson RA (eds) Food mycology: a multifaceted approach to Fungi and food. CRC Press, Boca Raton, pp 121–133

    Google Scholar 

  • Manojlović N, Ranković B (2012) Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Phytomedicine 19:1166–1172

    Article  PubMed  CAS  Google Scholar 

  • Marcet-Houben M, Gabaldón T (2016) Horizontal acquisition of toxic alkaloid synthesis in a clade of plant associated fungi. Fungal Genet Biol 86:71–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marmann A, Aly A, Lin W, Wang B, Proksch P (2014) Co-cultivation – a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar Drugs 12:1043–1065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Melo MG, dos Santos JP, Serafini MR, Caregnato FF, Pasquali MA, Rabelo TK, da Rocha RF, Jr Quintans L, Araújo AA, da Silva FA, Moreira JC, Gelain DP (2011) Redox properties and cytoprotective actions of atranorin, a lichen secondary metabolite. Toxicol In Vitro 25:462–468

    Article  CAS  PubMed  Google Scholar 

  • Minty JJ, Singer ME, Scholz SA, Bae C-H, Ahn J-H, Foster CE, Liao JC, Lin XN (2013) Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. PNAS 110:14592–14597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molnár K, Farkas E (2010) Current results on biological activities of lichen secondary metabolites: a review. Z Naturforsch C 65:157–173

    Article  PubMed  Google Scholar 

  • Mushegian AA, Peterson CN, Baker CM, Pringle A (2011) Bacterial diversity across individual lichens. J Appl Environ Microbiol 77:4249–4252

    Article  CAS  Google Scholar 

  • Nielsen KF, Holm G, Uttrup LP, Nielsen PA (2004) Mould growth on building materials under low water activities. Influence of humidity and temperature on fungal growth and secondary metabolism. Int Biodeterior Biodegradation 54:325–336

    Article  CAS  Google Scholar 

  • Niu J, Arentshorst M, Nair PDS, Dai Z, Baker SE, Frisvad JC Ram AFJ (2015) Identification of a classical mutant in the industrial host Aspergillus niger by systems genetics: LaeA is required for citric acid production and regulates the formation of some secondary metabolites. G3 6:193–204

    Google Scholar 

  • Nuetzmann HW, Reyes-Dominguez Y, Scherlach K, Schroeckh V, Horn F, Gacek A, Schümann J, Hertweck C, Strauss J, Brakhage AA (2011) Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci U S A 108:14282–14287

    Article  Google Scholar 

  • Oh DC, Jensen PR, Kauffman CA, Fenical W (2005) Libertellenones A–D: induction of cytotoxic diterpenoid biosynthesis by marine microbial competition. Bioorg Med Chem 13:5267–5273

    Article  CAS  PubMed  Google Scholar 

  • Oh DC, Kauffman CA, Jensen PR, Fenical W (2007) Induced production of emericellamides A and B from the marine-derived fungus Emericella sp. in competing co-culture. J Nat Prod 70:515–520

    Article  CAS  PubMed  Google Scholar 

  • Okuyama E, Umeyama K, Yamazaki M, Kinoshita Y, Yamamoto Y (1995) Usnic acid and diffractaic acid as analgesic and antipyretic components of Usnea diffracta. Planta Med 61:113–115

    Article  CAS  PubMed  Google Scholar 

  • Osbourn A (2010) Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends Genet 26:449–457

    Article  CAS  PubMed  Google Scholar 

  • Paranagama PA, Wijeratne EMK, Gunatilaka AAL (2007) Uncovering biosynthetic potential of plant-associated fungi: effect of culture conditions on metabolite production by Paraphaeosphaeria quadriseptata and Chaetomium chiwersii. J Nat Prod 70:1939–1945

    Article  CAS  PubMed  Google Scholar 

  • Pompilio A, Pomponio S, Di Vincenzo V, Crocetta V, Nicoletti M, Piovano M, Garbarino JA, Di Bonaventura G (2013) Antimicrobial and antibiofilm activity of secondary metabolites of lichens against methicillin-resistant Staphylococcus aureus strains from cystic fibrosis patients. Future Microbiol 8:281–292

    Article  CAS  PubMed  Google Scholar 

  • Punt PJ, Biezen N, Conesa A, Albers A, Mangnus J, Hondel C (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20:200–206

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Pan X, Kubicek C, Druzhinina I, Chenthamara K, Labbé J, Yuan Z (2017) Diverse plant-associated pleosporalean fungi from saline areas: ecological tolerance and nirogen-status dependent effects on plant growth. Front Microbiol 8:1–14

    Google Scholar 

  • Quispel A (1951) Some theoretical aspects of symbiosis. Antonie Van Leeuwenhoek 17:69–80

    Article  CAS  PubMed  Google Scholar 

  • Ranković B, Kosanić M (2015) Lichens as a potential source of bioactive secondary metabolites. In: Ranković B (ed) Lichen secondary metabolites. Springer, Cham, pp 1–26

    Google Scholar 

  • Rayner A (1988) Life in a collectivelessons from the fungi. New Scientist 120:49–53

    Google Scholar 

  • Reddy RG, Veeraval L, Maitra S, Chollet-Krugler M, Tomasi S, Dévéhat FL-L, Boustie J, Chakravarty S (2016) Lichen-derived compounds show potential for central nervous system therapeutics. Phytomedicine 23:1527–1534

    Article  CAS  PubMed  Google Scholar 

  • Reignault P, Kunz C, Delage N, Moreau E, Vedel R, Hamada W, Bompeix G, Boccara M (2000) Host and symptom-specific pectinase isozymes produced by wild-type strains and pathogenicity-altered transformants of Botrytis cinerea. Mycol Res 104:421–428

    Article  CAS  Google Scholar 

  • Reignault P, Valette-Collet O, Boccara M (2008) The importance of fungal pectinolytic enzymes in plant invasion, host adaptability and symptom type. Eur J Plant Pathol 120:1–11

    Article  CAS  Google Scholar 

  • Resende MLV, Salgado SML, Chaves ZM (2003) Espécies ativas de oxigênio na resposta de defesa de plantas a patógenos. Fitopatol Bras 28:123–130

    Article  Google Scholar 

  • Romão-Dumaresq AS, Dourado MN, Fávaro LCL, Mendes R, Ferreira A, Araújo WL (2016) Diversity of cultivated fungi associated with conventional and transgenic sugarcane and the interaction between endophytic Trichoderma virens and the host plant. PLoS One 11:e0158974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roossinck MJ (2005) Symbiosis versus competition in plant virus evolution. Nat Rev Microbiol 3:917–924

    Article  CAS  PubMed  Google Scholar 

  • Sandland GJ, Rodgers JK, Minchella DJ (2007) Interspecific antagonismand virulence in hosts exposed to two parasite species. J Invertebr Pathol 96:43–47

    Article  PubMed  Google Scholar 

  • Sapp J (1994) Evolution by association: a history of Symbiosis. Oxford University Press, New York, p 272

    Google Scholar 

  • Scherlach K, Hertweck C (2018) Mediators of mutualistic microbe–microbe interactions. Nat Prod Rep 25:303–308

    Article  Google Scholar 

  • Schlumbaum A, Mauch F, Vögeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324:365–367

    Article  CAS  Google Scholar 

  • Schroeckh V, Scherlach K, Nuetzmann HW, Shelest E, Schmid T-Heck W, Schuemann J, Martin K, Hertweck C, Brakhage AA (2009) Intimate bacterial–fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci U S A 106:14558–14563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seppelt RD, Türk R, Green TGA, Moser G, Pannewitz S, Sancho LG, Schroeter B (2010) Lichen and moss communities of Botany Bay, Granite Harbour, Ross Sea, Antarctica. Antarct Sci 22:691–702

    Article  Google Scholar 

  • Shang Z, Salim AA, Capon RJ (2017) Chaunopyran A: co-cultivation of marine mollusk-derived fungi activates a rare class of 2-alkenyl-tetrahydropyran. J Nat Prod 80:1167–1172

    Article  CAS  PubMed  Google Scholar 

  • Shukla V, Joshi GP, Rawat MSM (2010) Lichens as a potential natural source of bioactive compounds: a review. Phytochem Rev 9:303–314

    Article  CAS  Google Scholar 

  • Shwab EK, Keller NP (2008) Regulation of secondary metabolite production in filamentous ascomycetes. Mycol Res 112:225–230

    Article  CAS  PubMed  Google Scholar 

  • Silva GH, Oliveira CM, Teles HL, Pauletti PM, Castro-Gamboa I, Silva DHS, Bolzani VS, Young MCM, Costa-Neto CM, Pfenning LH, Berlinck RGS, Araujo AR (2010) Sesquiterpenes from Xylaria sp., an endophytic fungus associated with Piper aduncum (Piperaceae). Phytochem Lett 3:164–167

    Article  CAS  Google Scholar 

  • Sirrenberg A, Göbel C, Grond S, Czempinski N, Ratzinger A, Karlovsky P, Santos P, Feussner I, Pawlowski K (2007) Piriformospora indica affects plant growth by auxin production. Physiol Plant 131:581–589

    Article  CAS  PubMed  Google Scholar 

  • Solhaug KA, Lind M, Nybakken L, Gauslaa Y (2009) Possible functional roles of cortical depsides and medullary depsidones in the foliose lichen Hypogymnia physodes. Flora – Morphol Distrib Funct Ecol Pl 204:40–48

    Google Scholar 

  • Spatafora JW, Bushley KE (2015) Phylogenomics and evolution of secondary metabolism in plant-associated fungi. Curr Opin Plant Biol 26:37–44

    Article  CAS  PubMed  Google Scholar 

  • Spribille T, Tuovinen V, Resl P, Vanderpool D, Wolinski H, Aime MC, Schneider K, Stabentheiner E, Toome-Heller M, Thor G, Mayrhofer H, Johannesson H, McCutcheon JP (2016) Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353:488–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stierle AA, Stierle DB, Decato D, Priestley ND, Alverson JB, Hoody J, Mcgrath K, Klepacki D (2017) The berkeleylactones, antibiotic macrolides from fungal coculture. J Nat Prod 80:1150–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stocker-Wörgötter E (2008) Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat Prod Rep 25:188–200

    Article  PubMed  Google Scholar 

  • Suzuki MT, Parrot D, Berg G, Grube M, Tomasi S (2016) Lichens as natural sources of biotechnologically relevant bacteria. Appl Microbiol Biotechnol 100:583–595

    Article  CAS  PubMed  Google Scholar 

  • Teixeira PJPL, Thomazella DPT, Vidal RO, PFV d P, Reis O, Baroni RM, Franco SF, Mieczkowski P, GAG P, JMC M (2012) The fungal pathogen Moniliophthora perniciosa has genes similar to plant PR-1 that are highly expressed during its interaction with cacao. PLoS One 7:e45929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teles APC, Ataliba GS, Takahashi JA (2012) Modulation of Paecilomyces lilacinus antimicrobial metabolite production by co-culturing with Salmonella typhimurium. Nat Prod Res (Print) 27:1598–1601

    Article  CAS  Google Scholar 

  • Tortora GJ, Funke BR, Case CL (2012) Microbiologia, 10th edn. Artmed, Porto Alegre, p 934

    Google Scholar 

  • van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  CAS  Google Scholar 

  • Varol M, Türk A, Candan M, Tay T, Koparal AT (2016) Photoprotective activity of vulpinic and gyrophoric acids toward ultraviolet b-induced damage in human keratinocytes. Phytother Res 30:9–15

    Article  CAS  PubMed  Google Scholar 

  • Vijayakumar CS, Viswanathan S, Reddy MK, Parvathavarthini S, Kundu AB, Sukumar E (2000) Anti-inflammatory activity of (+)-usnic acid. Fitoterapia 71:564–566

    Article  CAS  PubMed  Google Scholar 

  • Vining LC (1992) Secondary metabolism, inventive evolution and biochemical diversity – a review. Gene 115:135–140

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-Y, Liu B, Zhang X-Y, Zhou Q-M, Zhang T, Li H, Yu Y-F, Zhang X-L, Hao X-Y, Wang M, Wang L, Wei J-C (2014) Genome characteristics reveal the impact of lichenization on lichen-forming fungus Endocarpon pusillum Hedwig (Verrucariales, Ascomycota). BMC Genomics 15:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei Q, Wang H, Chen Z, Lv Z, Xie Y, Lu F (2013) Profiling of dynamic changes in the microbial during the soy sauce fermentation process. Appl Microbiol Biotechnol 97:9111–9119

    Article  CAS  PubMed  Google Scholar 

  • Williams RB, Henrikson JC, Hoover AR, Lee AE, Cichewicz RH (2008) Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem 6:1895–1897

    Article  CAS  PubMed  Google Scholar 

  • Xiang Y, Herman T, Hartman GL (2014) Utilizing soybean milk to culture soybean pathogens. Adv Microbiol 4:126–132

    Article  CAS  Google Scholar 

  • Xiong S, Huang C (2018) Synergistic strategies of predominant toxins in snake venoms. Toxicol Lett 287:142–154

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Mizuguchi R, Yamada Y, Yamamoto O (1985) Tissue cultures of Usnea rubescens and Ramalina yasudae and production of usnic acid in their cultures. Agric Biol Chem 49:3347–3348

    CAS  Google Scholar 

  • Yang Y, Nguyen TT, Jeong M-H, Crişan F, Yu YH, Ha H-H, Choi KH, Jeong HG, Jeong TC, Lee KY, Kim KK, Hur JS, Kim H (2016) Inhibitory activity of (+)-usnic acid against non-small cell lung cancer cell motility. PLoS One 11:e0146575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yılmaz M, Türk AÖ, Tay T, Kıvanç M (2004) The antimicrobial activity of extracts of the lichen cladonia foliacea and its (−)-usnic acid, atranorin, and fumarprotocetraric acid constituents. Z Naturforsch C 59:249–254

    Article  PubMed  Google Scholar 

  • Yin W, Keller NP (2011) Transcriptional regulatory elements in fungal secondary metabolism. J Microbiol 49:329–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Qi J, Cao Y (2014) Synergistic effect of yeast-bacterial co-culture on bioremediation of oil-contaminated soil. Biorem J 18:136–146

    Article  CAS  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  CAS  PubMed  Google Scholar 

  • Zuck KM, Shipley S, Newman DJ (2011) Induced production of N-formyl alkaloids from Aspergillus fumigatus by co-culture with Streptomyces peucetius. J Nat Prod 74:1653–1657

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG CEX APQ 02604/16), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant # 304922/2018-8), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and National Institute of Science and Technology - INCT BioNat, grant # 465637/2014-0, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Aparecida Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Oliveira, G.P., de Almeida Martins, B., Lima, M.T.N.S., Takahashi, J.A. (2019). Modulation of Fungal Metabolome by Biotic Stress. In: Satyanarayana, T., Deshmukh, S., Deshpande, M. (eds) Advancing Frontiers in Mycology & Mycotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9349-5_24

Download citation

Publish with us

Policies and ethics