Skip to main content

Aflatoxin and Ochratoxin A Detection: Traditional and Current Methods

  • Chapter
  • First Online:
Book cover Advancing Frontiers in Mycology & Mycotechnology

Abstract

Mycotoxins such as aflatoxin and ochratoxin A are secondary metabolites secreted by Aspergillus and Penicillium species. These fungal species flourish in foodstuff and feeds under appropriate temperature and humidity conditions to produce mycotoxins. Aflatoxins are known carcinogens and ochratoxin A causes nephrotoxicity. The contamination of mycotoxins in food and feed, persistence during food processing, and toxicity make them a primary health hazard. Therefore, determination of aflatoxin and ochratoxin A contamination bears a critical importance. Classical methods like chromatographic separation including thin-layer chromatography, high-performance liquid chromatography, and mass spectroscopy are described. Detection of the causal organism by molecular approaches employing PCR and real-time PCR may contribute in early detection. Recently, immunochemical-based methods like enzyme-linked immunosorbent assay and electrical, optical, and piezoelectric immunosensors are being used for the screening purposes. Such detection platforms are portable, reducing the dependence on costly instrumentation. Current strategies to improve the mycotoxin detection involve nanotechnology-enabled sensors. One of the main challenges for the detection of mycotoxin contamination is the co-occurrence of two or more toxins in food and feed samples. The incorporation of novel recognition elements such as antibodies, peptides, or aptamers with nanoparticles for LFA and immunosensors has immense potential for simultaneously sensitive, specific, and cost-effective multitoxin analysis. Such devices will contribute to improved detection of toxic secondary fungal metabolites critical in food safety, human health, and food trade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboul Enein HY, Kutluk OB, Altiokka G, Tuncel M (2002) A modified HPLC method for the determination of ochratoxin A by fluorescence detection. Biomed Chromatogr 16:470–474

    Article  CAS  PubMed  Google Scholar 

  • Adanyi N, Levkovets IA, Rodriguez-Gil S, Ronald A, Varadi M, Szendro I (2007) Development of immunosensor based on OWLS technique for determining Aflatoxin B1 and Ochratoxin A. Biosens Bioelectron 22:797–802

    Article  CAS  PubMed  Google Scholar 

  • Agbetiameh D, Ortega-Beltran A, Awuah RT, Atehnkeng J, Cotty PJ, Bandyopadhyay R (2018) Prevalence of aflatoxin contamination in maize and groundnut in ghana: population structure, distribution, and toxigenicity of the causal agents. Plant Dis 102:764–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alarcon SG, Palleschi G, Compagnonec D, Pascale M, Visconti A, Barna-Vetron I (2006) Monoclonal antibody based electrochemical immunosensor for the determination of ochratoxin A in wheat. Talanta 69:1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Alshannaq A, Yu JH (2017) Occurrence, toxicity and analysis of major mycotoxins in food. Int J Environ Res Public Health 14:632

    Article  PubMed Central  CAS  Google Scholar 

  • Anfossi L, D’Arco G, Baggiani C, Giovannoli C, Giraudi G (2011) A lateral flow immunoassay for measuring ochratoxin A: Development of a single system for maize, wheat and durum wheat. Food Cont 22:1965–1970

    Google Scholar 

  • Anfossi L, Giovannoli C, Giraudi G, Biagioli F, Passini C, Baggiani C (2012) A lateral flow immunoassay for the rapid detection of ochratoxin A in wine and grape must. J Agric Food Chem 60:11491−11497

    Article  CAS  PubMed  Google Scholar 

  • Antep HM, Merdivan M (2012) Determination of ochratoxin A in grape wines after dispersive liquid–liquid microextraction using high performance thin layer and liquid chromatography–fluorescence detection. J Biol Chem 40:155–163

    Google Scholar 

  • Atoui A, Mathieu F, Lebrihi A (2007) Targeting a polyketide synthase gene for Aspergillus carbonarius quantification and ochratoxin A assessment in grapes using real-time PCR. Int J Food Microbiol 115:313–318

    Article  CAS  PubMed  Google Scholar 

  • Azer M, Cooper C (1991) Determination of aflatoxins in foods using HPLC and a commercial ELISA system. J Food Protect 54:291–294

    Article  CAS  Google Scholar 

  • Badea M, Floroian L, Restani P, Codruta S, Cobzac A, Moga M (2016) Ochratoxin A detection on antibody immobilized on bsa-functionalized gold electrodes. PLoS One 11:e0160021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baptista P, Doria GA, Henriques D, Pereira E, Franco R (2005) Colorimetric detection of eukaryotic gene expression with DNA-derivatized gold nanoparticles. J Biotechnol 119:111–117

    Article  CAS  PubMed  Google Scholar 

  • Bazin, I , Andreotti N, IbnHadjHassine A, DeWaard M, Sabatier JM, Gonzalez C (2013) Peptide binding to ochratoxin A mycotoxin: a new approach in conception of biosensors Biosens Bioelectron 40:240–246

    Article  CAS  PubMed  Google Scholar 

  • Binder EM (2007) Managing the risk of mycotoxins in modern feed. Anim Feed Sci Tech 133:149–166

    Article  CAS  Google Scholar 

  • Bogs C, Battilani P, Geisen R (2006) Development of a molecular detection and differentiation system for ochratoxin A producing Penicillium species and its application to analyse the occurrence of Penicillium nordicum in cured meats. Int J Food Microbiol 107:39–47

    Article  CAS  PubMed  Google Scholar 

  • Boudra H, Le Bars P, Le Bars J (1995) Thermostability of ochratoxin a in wheat under two moisture conditions. Appl Environ Microbiol 61:1156–1158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braicu C, Puia E, Bodoki E, Socaciu C (2008) Screening and quantification of aflatoxins and ochratoxin a in different cereals cultivated in Romania using thin-layer chromatography-densitometry. J Food Qual 31:108–120

    Article  CAS  Google Scholar 

  • Bryden WL (2012) Mycotoxin contamination of the feed supply chain: implications for productivity and feed security. Anim Feed Sci Tech 173:134–158

    Article  CAS  Google Scholar 

  • Chen Y, Chen Q, Han M, Zhou J, Gong L, Niu Y, Zhang Y, He L, Zhang L (2016) Development and optimization of a multiplex lateral flow immunoassay for the simultaneous determination of three mycotoxins in corn, rice and peanut. Food Chem 213: 478–484

    Article  CAS  PubMed  Google Scholar 

  • Cho YJ, Lee DH, Kim DO, Min WK, Bong KT, Lee GG, Seo JH (2005) Production of a monoclonal antibody against ochratoxin a and its application to immunochromatographic Assay. J Agric Food Chem 53:8447−8451

    Article  CAS  PubMed  Google Scholar 

  • Criseo G, Bagnara A, Bisignano G (2001) Differentiation of aflatoxin-producing and non-producing strains of Aspergillus flavus group. Letts Appl Microbiol 33:291–295

    Article  CAS  Google Scholar 

  • Daly SG, Keating GJ, Dillon PP et al (2000) Development of surface plasmon resonance-based immunoassay for aflatoxin B1. J Agri Food Chem 48:5097–5104

    Article  CAS  PubMed  Google Scholar 

  • Dao HP, Mathieu F, Lebrihi A (2005) Two primer pairs to detect OTA producers by PCR method. Int J Food Microbiol 104:61–67

    Article  CAS  PubMed  Google Scholar 

  • Delmulle BS, de Saeger SMDG, Sibanda L, Barna-Vetro I, van Peteghem CH (2005) Development of an immunoassaybased lateral flow dipstick for the rapid detection of aflatoxin B1 in pig feed. J Agric Food Chem 53:3364–3368

    Article  CAS  PubMed  Google Scholar 

  • Desalegn B, Nanayakkara S, Harada KH, Hitomi T, Chandrajith R, Karunaratne U, Abeysekera T, Koizumi A (2011) Mycotoxin detection in urine samples of patients with chronic kidney disease of uncertain etiology from Sri Lanka. Bull Environ Contam Toxicol 87:6

    Article  CAS  PubMed  Google Scholar 

  • Devi KT, Mayo M, Reddy KLN, Delfosse P, Reddy G, Reddy SV, DVR R (1999) Production and characterization of monoclonal antibodies for aflatoxin B1. Lett Appl Microbiol 29:284–288

    Article  CAS  PubMed  Google Scholar 

  • Devi KT, Mayo M, Hall AJ, Craufurd PQ, Wheeler TR, Waliyar F, Subrahmanyam A, Reddy K (2002) Development and application of an indirect competitive enzymelinked immunoassay for aflatoxin M1 in milk and milk-based confectionery. J Agri Food Chem 50:933–937

    Article  CAS  Google Scholar 

  • Durguti V, Georgieva A, Angelov A, Bajrami Z (2014) Quantitative determination of ochratoxin A in wine after the clarification and filtration. Croat J Food Sci Technol 6:79–83

    Article  Google Scholar 

  • Edwards SG, O’Callaghan J, Dobson ADW (2001) PCR-based detection and quantification of mycotoxigenic fungi. Mycol Res 106:1005–1025

    Article  CAS  Google Scholar 

  • Ekhtelat M, Badpa F, Khorasgani ZN, Azemi E (2018) High-performance Liquid Chromatography analysis of Ochratoxin A in Zataria multiflora and Foeniculum vulgare in Ahvaz (Iran). Asian J Pharmaceut 12:S523

    CAS  Google Scholar 

  • Eun-mee H, Park HR, Hu SJ, Kwon KS, Lee H, Ha M, Kim K, Ko E, Ha S, Chun H, Chung D, Bae D (2006) Monitoring of Aflatoxin B1 in Livestock Feeds Using ELISA and HPLC. J Microbiol Biotechnol 16:643–646

    Google Scholar 

  • Fuji S, Ono EYS, Ribeiro RMR, Assunção FGA, Takabayashi CR, Moreira de Oliveir TCR, Itano EN, Ueno Y, Kawamura O, Hirooka EY (2007) A Comparison between enzyme immunoassay and hplc for ochratoxin a detection in green, roasted and instant coffee. Braz Arch Biol Technol 50:349–359

    Article  Google Scholar 

  • Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis and biomedical applications. Accounts Chem Res 42:1097–1107

    Article  CAS  Google Scholar 

  • Giraudi G, Anfossi L, Baggiani C, Giovannoli C, Tozzi C (2007) Solid-phase extraction of ochratoxin A from wine based on a binding hexapeptide prepared by combinatorial synthesis. J Chromatogr A 1175:174–180

    Article  CAS  PubMed  Google Scholar 

  • Guo P, Wei C (2005) Quantum dots for robust and simple assays using single particles in nanodevices. Nanomed Nanotechnol Biol Med 1:122–124

    Article  CAS  Google Scholar 

  • Ha TH (2015) Recent advances for the detection of ochratoxin A. Toxins 7:5276–5300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hampikyan H, Bingol EB, Colak H, Cetin O, Bingol B (2015) Determination of ochratoxin a in baby foods by ELISA And HPLC. Acta Aliment 44:578–584

    Article  CAS  Google Scholar 

  • Harry SR, Hicks DJ, Amiri KI, Wright DW (2010) Hairpin DNA coated gold nanoparticles as intracellular mRNA probes for the detection of tyrosinase gene expression in melanoma cells. Chem Commun 46:5557–5559

    Article  CAS  PubMed  Google Scholar 

  • Herzallah SM (2009) Determination of aflatoxins in eggs, milk, meat and meat products using HPLC fluorescent and UV detectors. Food Chem 114:1141–1146

    Article  CAS  Google Scholar 

  • Janshoff A, Galla HJ, Steinem C (2000) Piezoelectric mass-sensing devices as biosensors - an alternative to optical biosensors?Angew Chem. Int Ed 39:4004–4032

    CAS  Google Scholar 

  • Javier DJ, Castellanos-Gonzalez A, Weigum SE, White AC, Richards-Kortum R (2009) Oligonucleotide-gold nanoparticle networks for detection of Cryptosporidium parvum heat shock protein 70 mRNA. J Clin Microbiol 47:4060–4066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin X, Liu X, Chen L,Jiang J, Shen G, Yu R (2009) Biocatalyzed deposition amplification for detection of aflatoxin B1 based on quartz crystal microbalance Anal Chim Acta 645:92–97

    Article  CAS  PubMed  Google Scholar 

  • Jung S, Choe B, Shin G, Kim J, Chae Y (2012) Analysis of roasted and ground grains on the seoul (korea) market for their contaminants of aflatoxins, ochratoxin A and Fusarium toxins by LC-MS/MS. World Academy Sci Engineer Technol 6:12–23

    Google Scholar 

  • Kilicel F, Karapinar HS, Cimen A (2017) Quantitation of aflatoxins in food materials using HPLC-FLD method. Sci J Analy Chem 5:90–97

    Article  CAS  Google Scholar 

  • Kim KS, Park JK (2005) Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel. Lab Chip 5:657–664

    Article  CAS  PubMed  Google Scholar 

  • Kim NY, Lee I, Ji GE (2014) Reliable and simple detection of ochratoxin and fumonisin production in black Aspergillus. J Food Protect 77:653–658

    Article  CAS  Google Scholar 

  • Kim HJ, Lee MJ, Kim HJ, Cho SK, Park HJ, Jeong MH (2017) Analytical method development and monitoring of aflatoxin B1, B2, G1, G2 and ochratoxin A in animal feed using HPLC with Fluorescence detector and photochemical reaction device. Cogent Food Agric 3:1419788

    Google Scholar 

  • Kok WT, van Neer TCH, Traag WA, Tuinstra LGT (1986) Determination of aflatoxins in cattle feed by liquid chromatography and post-column derivatization with electrochemically generated bromine. J Chromat A 367:231–236

    Article  CAS  Google Scholar 

  • Kolosova AY, Sibanda L, Dumoulin F, Lewis J, Duveiller E, Van Peteghem C, De Saeger S (2008) Lateral-flow colloidal gold-based immunoassay for the rapid detection of deoxynivalenol with two indicator ranges. Anal Chim Acta 616:235–244

    Article  CAS  PubMed  Google Scholar 

  • Kong Z, Wang H, Zou L, Ji Z (2018) Enhancement of aflatoxin B1 detection using electrochemical immunoassay method and 2-aminoethanethiol. Mater Res Express 5:066414

    Article  CAS  Google Scholar 

  • Kotinagu K, Mohanamba T, Rathna Kumari N (2015) Assessment of aflatoxin B1 in livestock feed and feed ingredients by high-performance thin layer chromatography. Veterinary World. EISSN: 2231-0916

    Google Scholar 

  • Kupski L, Badiale-Furlong E (2015) Principal components analysis: an innovative approach to establish interferences in ochratoxin a detection. Food Chem 177:354–360

    Article  CAS  PubMed  Google Scholar 

  • Kushiro M, Hatabayashi H, Nakagawa H, Yabe K (2017) Improvement of mobile phase in thin-layer chromatography for aflatoxins and analysis of the effect of dichlorvos in aflatoxigenic fungi. JSM Mycotoxins 67:5–6

    Article  CAS  Google Scholar 

  • Lai W, Fung DYC, Xu Y, Liu R, Xiong Y (2009) Development of a colloidal gold strip for rapid detection of ochratoxin A with mimotope peptide. Food Control 20:791–795

    Article  CAS  Google Scholar 

  • Levin RE (2012) PCR detection of aflatoxin producing fungi and its limitations. Int J Food Microbiol 156:1–6

    Article  CAS  PubMed  Google Scholar 

  • Li P, Zhou Q, Wang T, Zhou H, Zhang W, Ding X, Zhang Z, Chang PK, Zhang Q (2016). Development of an enzyme-linked immunosorbent assay method specific for the detection of g-group aflatoxins. Toxins 8:5. https://doi.org/10.3390/toxins8010005

    Article  PubMed Central  CAS  Google Scholar 

  • Linting Z, Ruiyi L, Zaijun L, Qianfang X, Yinjun F, Junkang L (2012) An immunosensor for ultrasensitive detection of aflatoxin B1 with an enhanced electrochemical performance based on graphene/conducting polymer/gold nanoparticles/the ionic liquid composite film on modified gold electrode with electrodeposition. Sens Actuators B Chem 174:359–365

    Article  CAS  Google Scholar 

  • Liu X, Yang Z, Zhang Y, Yu R (2013) A novel electrochemical immunosensor for ochratoxin A with hapten immobilization on thionine/gold nanoparticle modified glassy carbon electrode. Anal Methods 5:1481–1486

    Article  CAS  Google Scholar 

  • Magan N, Hope R, Colleate A, Baxter ES (2002) Relationship between growth and mycotoxin production by Fusarium species, biocides and environment. Eur J Pl Pathol 108:685–690

    Google Scholar 

  • Mahmoud MA (2015) Detection of Aspergillus flavus in stored peanuts using real-time pcr and the expression of aflatoxin genes in toxigenic and atoxigenic A. flavus isolates. Foodborne Pathog Dis 12:289–296

    Article  CAS  PubMed  Google Scholar 

  • Maragos CM, Busman M (2010) Rapid and advanced tools for mycotoxin analysis: a review. Food Addit Contam 27:688–700

    Article  CAS  Google Scholar 

  • Masoomi L, Sadeghi O, Banitaba MH, Shahrjerdi A, Davarani SSH (2013) A non-enzymatic nanomagnetic electroimmunosensor for determination of Aflatoxin B1 as a model antigen. Sens Actuators B Chem 177:1122–1127

    Article  CAS  Google Scholar 

  • Meuccia V, Razzuolia E, Soldania G, Massart F (2010) Mycotoxin detection in infant formula milks in Italy. Food Addit Contam 27:64–71

    Article  CAS  Google Scholar 

  • Mirghani MES, Man YBC, Jinap S, Baharin BS, Bakar J (2001) A new method for determining aflatoxins in groundnut and groundnut cake using Fourier transform infrared spectroscopy with attenuated total reflectance. J Am Oil Chem Soc 78:985–992

    Article  CAS  Google Scholar 

  • Moon J, Kim G, Lee S (2013) Development of nanogold-based lateral flow immunoassay for the detection of ochratoxin a in buffer systems. J Nanosci Nanotechnol 13: 7245–7249

    Article  CAS  PubMed  Google Scholar 

  • Muchindu M, Iwuoha E, Pool E, West N, Jahed N, Baker P, Waryo T, Williams A (2011) Electrochemical Ochratoxin A immunosensor system developed on sulfonated polyaniline. Electroanalysis 23:122–128

    Article  CAS  Google Scholar 

  • Myndrul V, Viter R, Savchuk M, Shpyrka N, Erts D, Jevdokimovs D, Silamiķelis V, Smyntyna V, Ramanavicius A, Iatsunskyi I (2018) Porous silicon based photoluminescence immunosensor for rapid and highly-sensitive detection of Ochratoxin A. Biosens Bioelectron 102:661–667

    Article  CAS  PubMed  Google Scholar 

  • Nisa A, Zahra N, Hina S (2014) Detection of aflatoxins in rice samples. Bangladesh J Sci Ind Res 49: 189–194

    Article  Google Scholar 

  • Olsson J, Börjesson T, Lundstedt T, Schnürer J (2002) Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC-MS and electronic nose. Int J Food Microbiol 72:203–214

    Article  CAS  PubMed  Google Scholar 

  • Parker CO, Tothill IE (2009) Development of an electrochemical immunosensor for aflatoxin M1 in milk with focus on matrix interference. Biosens Bioelectron 24:2452–2457

    Article  CAS  PubMed  Google Scholar 

  • Pirinçci SS, Ertekin O, Laguna DE,Özen FS, Öztürk ZZ , Öztürk S (2018) Label-free QCM immunosensor for the detection of ochratoxin A. Sensors 18:1161. https://doi.org/10.3390/s18041161

    Article  CAS  PubMed Central  Google Scholar 

  • Piro B, Shi A, Reisberg S, Noël V, Anquetin G (2016) Comparison of electrochemical immunosensors and aptasensors for detection of small organic molecules in environment, food safety, clinical and public security. Biosensors 6:7

    Article  PubMed Central  CAS  Google Scholar 

  • Pittet A, Royer D (2002) Rapid, low cost thin-layer chromatographic screening method for the detection of ochratoxin A in green coffee at a control level of 10íg/Kg. J Agric Food Chem 50:243–247

    Article  CAS  PubMed  Google Scholar 

  • Prestani A, Tabatabaei SN, Fazeli MH, Antikchi M, Baabaei M (2011) Comparison of HPLC and Elisa for determination of aflatoxin concentration in the milk and feeds of dairy cattle. J Res Agri Sci 7:71–78

    Google Scholar 

  • Quesada-González D, Merkoçi A (2015) Nanoparticle-based lateral flow biosensors Biosens Bioelectron. 73:47–63

    Google Scholar 

  • Radi E, Muñoz-Berbel X, Cortina-Puig M, Marty JL (2009) An electrochemical immunosensor for ochratoxin A based on immobilization of antibodies on diazonium-functionalized gold electrode. Electrochim Acta 54:2180–2184

    Article  CAS  Google Scholar 

  • Rahimi E, Shakerian A (2013) Ochratoxin A in dried figs, raisings, apricots, dates on Iranian retail market. Health 5:2077–2080

    Article  CAS  Google Scholar 

  • Rahmani A, Jinap S, Soleimany F (2009) Qualitative and quantitative analysis of mycotoxins. Comprehen Rev Food Sci Food Saf 8:202–251

    Article  CAS  Google Scholar 

  • Rauch P, Fukal L, Prosek J, Brezina P, Kas J (1987) Radioimmunoassay of aflatoxin M1. J Radioanaly Nucl Chem 117:163–169

    Article  CAS  Google Scholar 

  • Ren M, Xu H, Huang X, Kuang M, Xiong Y, Xu H, Xu Y, Chen H, Wang A (2014) Immunochromatographic assay for ultrasensitive detection of aflatoxin b1 in maize by highly luminescent quantum dot beads. ACS Appl Mater Interfaces 6:14215−14222

    Article  CAS  Google Scholar 

  • Rivas L, Mayorga-Martinez CC, Quesada-Gonzalez D, Zamora-Galvez A, Escosura-Muñiz A, Merkociṃ A (2015) Label-free impedimetric aptasensor for ochratoxin-A detection using iridium oxide nanoparticles. Anal Chem 87:5167–5172

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez A, Rodriguez M, Luque MI, Martin A, Cordoba JJ (2012) Real-time PCR assays for detection and quantification of aflatoxin-producing molds in foods. Food Microbiol 31:89e99

    Article  CAS  Google Scholar 

  • Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562

    Article  CAS  PubMed  Google Scholar 

  • Sadhasivam S, Britzi M, Zakin V, Kostyukovsky M, Trostanetsky A, Quinn E, Ionov E (2017) Rapid detection and identification of mycotoxigenic fungi and mycotoxins in stored wheat grain. Toxins 9:302

    Article  PubMed Central  CAS  Google Scholar 

  • Santos VO, Pelegrini PB, Mulinari F, Lacerda AF, Moura, RS, Cardoso LPV, Bührer-Sékula S, Miller RNG, Grossi-de-Sa MF (2017) Development and validation of a novel lateral flow immunoassay device for detection of aflatoxins in soy-based foods. Anal Methods 9:2715–2722

    Article  CAS  Google Scholar 

  • Sartori D, Furlaneto MC, Martins MK, de Paula MRF, Pizzirani-Kleiner AA, Taniwaki MH, Fungaro MHP (2006) PCR method for the detection of potential ochratoxin-producing Aspergillus species in coffee beans. Res Microbiol 157:350–354

    Article  CAS  PubMed  Google Scholar 

  • Schmidt-Heydt M, Parra R, Geisen R, Magan N (2011) Modelling the relationship between environmental factors, transcriptional genes and deoxynivalenol mycotoxin production by strains of two Fusarium species. J. R. Soc Interf 8:117–126

    Google Scholar 

  • Schneider E, Curtui V, Seidler C, Dietrich R, Usleber E, Märtlbauer E (2004) Rapid methods for deoxynivalenol and other tricothecenes. Toxicol Lett 153:113–121

    Article  CAS  PubMed  Google Scholar 

  • Scott P (1995) Mycotoxin methodology. Food Addit Contam 12:395–403

    Article  CAS  PubMed  Google Scholar 

  • Selvan ST, Tan TY, Yi DK, Jana NR (2009) Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir 26:11631–11641

    Article  CAS  Google Scholar 

  • Shapira R, Paster N, Eyal O, Menasherov M, Mett A, Salomon R (1996) Detection of aflatoxinogenic molds in grains by PCR. Appl Environ Microbiol 62:3270–3273. PMid:8795215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Kumar A, Khan R (2017) Electrochemical immunosensor based on poly (3,4-ethylenedioxythiophene) modified with gold nanoparticle to detect aflatoxin B1. Mater Sci Engineer C, Mater Biol Appl 76:802–809

    Article  CAS  Google Scholar 

  • Shephard GS (2008) Determination of mycotoxins in human food. Chem Soc Rev 37:2468–2477

    Article  CAS  PubMed  Google Scholar 

  • Skarkova J, Ostry V (2000) An HPTLC method for confirmation of the presence of ultra, trace amounts of aflatoxin M1 in human urine. J Planar Chromat 13:42–49

    CAS  Google Scholar 

  • Smith MC, Madec S, Coton E, Hymery N (2016) Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins 8:94. https://doi.org/10.3390/toxins8040094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soh JH, Lin Y, Rana S, Ying JY, Stevens MM (2015) Colorimetric detection of small molecules in complex matrixes via target-mediated growth of aptamer-functionalized gold nanoparticles. Anal Chem 87:7644–7652

    Article  CAS  PubMed  Google Scholar 

  • Song S, Liu N, Zhao Z, Ediage EN, Wu S, Sun C, Saeger SD, Wu A (2014) Multiplex lateral flow immunoassay for mycotoxin determination. Anal Chem 86:4995−5001

    Article  CAS  PubMed  Google Scholar 

  • Spinella K, Mosiello L, Palleschi G, Vitali F (2013) Development of a qcm (quartz crystal microbalance) biosensor to the detection of Aflatoxin B1. Open J Appl Biosensor 2:112–119

    Article  CAS  Google Scholar 

  • Streit E, Schwab C, Sulyok M, Naehrer K, Krska R, Schatzmayr G (2013) Multi-mycotoxin screening reveals the occurrence of 139 different secondary metabolites in feed and feed ingredients. Toxins 5:504–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulyok M, Berthiller F, Krska R, Schuhmacher R (2006) Development and validation of a liquid chromatography/ tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Commun Mass Spectrom 20:2649–2659

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Gu X, Li JG, Yao T, Dong YC (2015) Quality evaluation of five commercial enzyme linked immunosorbent assay kits for detecting Aflatoxin B1 in Feedstuffs. Asian Australas J Anim Sci 28:691–696

    Google Scholar 

  • van der Gaag B, Spath S, Dietrich H et al (2003) Biosensors and multiple mycotoxin analysis. Food Cont 14:251–254

    Article  CAS  Google Scholar 

  • Velu R, DeRosa MC (2018) Lateral flow assays for Ochratoxin A using metal nanoparticles: comparison of “adsorption–desorption” approach to linkage inversion assembled nano-aptasensors LIANA. Analyst 143:4566–4574

    Article  CAS  PubMed  Google Scholar 

  • Venkataramana M, Rashmi R, Uppalapati SR, Chandranayaka S, Balakrishna K, Radhika M, Gupta VK, Batra HV (2015) Development of sandwich dot-ELISA for specific detection of OchratoxinA and its application on to contaminated cerealgrains originating from India. Front Microbiol 6:article 511

    Google Scholar 

  • Vidal JC, DuatoP BL, Castillo JR (2009) Use of polyclonal antibodies to ochratoxin a with a quartz – crystal microbalance for developing real-time mycotoxin piezoelectric immunosensors. Anal Bioanal Chem 394:575–582

    Article  CAS  PubMed  Google Scholar 

  • Vitera R, Savchuk M, Iatsunskyic I, Pietralik Z, Starodub N, Shpyrka N, Ramanaviciene A, Ramanavicius A (2018) Analytical, thermodynamical and kinetic characteristics of photoluminescence immunosensor for the determination of Ochratoxin A. Biosens Bioelectron 99:237–243

    Article  CAS  Google Scholar 

  • Vo-Dinh T (2007). Nanotechnology for application in biology and medicine. CRC Press, Boca Raton

    Google Scholar 

  • Wang XH, Liu T, Xu N, Zhang Y, Wang S (2007) Enzyme-linked immunosorbent assay and colloidal gold immunoassay for ochratoxin a: investigation of analytical conditions and sample matrix on assay performance. Anal Bioanal Chem 389:903–911

    Article  CAS  PubMed  Google Scholar 

  • Won-bo S, Yang Z, Kim J, Kim JY, Kang SJ, Woo GJ, Chung YC, Eremin S, Chung DH (2007) Development of immunochromatography strip-test using nanocolloidal gold-antibody probe for the rapid detection of aflatoxin b1 in grain and feed samples. J Microbiol Biotechnol 17: 1629–1637

    Google Scholar 

  • Wacoo AP, Wendiro D, Vuzi PC, Hawumba JF (2014) Methods for detection of aflatoxins in agricultural food crops. J Appl Chem 2014:Article ID 706291

    Article  CAS  Google Scholar 

  • Welke JE, Hoeltz M, Dottori HA, Noll IB (2010) Determination of ochratoxin A in wine by high-performance thin-layer chromatography using charged coupled device. J Braz Chem Soc 21:441–446

    Article  CAS  Google Scholar 

  • Xiao H, Marquardt RR, Abramson D, Frohlich AA (1996) Metabolites of Ochratoxins in rat urine and in a culture of Aspergillus ochraceus. Appl Environ Microbiol 62:648–655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yazdanpanah H, Zarghi A, Shafaati AR, Foroutan SM, Aboul-Fathi F, Khoddam A, Nazari F, Shaki F (2013) Analysis of aflatoxin B1 in Iranian foods using hplc and a monolithic column and estimation of its dietary intake. Iranian J Pharmaceut Res 12:83–89

    CAS  Google Scholar 

  • Yoon BR, Hong SY, Cho SM, Lee KR, Kim M, Chung SH (2016) Aflatoxin M1 levels in dairy products from South Korea determined by high performance liquid chromatography with fluorescence detection. J Food Nutrit Res 55:171–180

    CAS  Google Scholar 

  • Zhang G, Zhu C, Huang Y, Yan J, Chen A (2018) A lateral flow strip based aptasensor for detection of ochratoxin A in corn samples. Molecules 23:291. https://doi.org/10.3390/molecules23020291

    Article  CAS  PubMed Central  Google Scholar 

  • Zhao SP, Zhang D, Tan LH, Yu B, Cao WG (2016) Analysis of aflatoxins in traditional Chinese medicines: classification of analytical method on the basis of matrix variations. Sci Reports 6:30822

    Article  CAS  Google Scholar 

  • Zhou W, Kong W, Dou X, Zhao M, Ouyang Z, Yang M (2016) An aptamer based lateral flow strip for on-site rapid detection of ochratoxin A in Astragalus membranaceus. J Chromatogr B 1022:102–108

    Article  CAS  Google Scholar 

Download references

Acknowledgments

VG and PC thank the Department of Biotechnology and Department of Science and Technology, Government of India for the funding (BT/PR10455/PFN/20/869/2013 & DST/INT/MECICO/P-06/2016). SR thanks the Department of Science and Technology for Junior Research Fellowship under INSPIRE program.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahi, S., Choudhari, P., Ghormade, V. (2019). Aflatoxin and Ochratoxin A Detection: Traditional and Current Methods. In: Satyanarayana, T., Deshmukh, S., Deshpande, M. (eds) Advancing Frontiers in Mycology & Mycotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9349-5_15

Download citation

Publish with us

Policies and ethics