Skip to main content

Recent Developments in Ectomycorrhizal Research

  • Chapter
  • First Online:
Advancing Frontiers in Mycology & Mycotechnology

Abstract

Symbiotic associations are known to be established by rhizospheric fungi with the root systems of host plants and trees. Ectomycorrhizae, the symbiotic fungi, provide growth-limiting micronutrients to host plants and enable plants and trees to colonize temperate and boreal regions. The symbiotic associates reciprocally exchange nutrients at the interface of ectomycorrhizae known as Hartig net. The ectomycorrhizal association leads to various root fabrication modifications such as development of plentiful short and inflated lateral roots ensheathed by ectomycorrhizal fungal mantle. Ectomycorrhizae have been known to be evolved from 60 independent saprophytic lineages. The last few years saw the development of latest techniques to gain insight into evolution, diversity, and reciprocal trades occurring between symbiotic partners and molecular mechanisms playing role beneath these phenomena. The whole genomes of several ectomycorrhizal fungi have been sequenced leading to improved perception of behaviour of these fungi and their genes in ectomycorrhizal associations. In this chapter, latest developments in biodiversity of ectomycorrhizal fungi, novel genes involved in symbiosis, molecular mechanisms behind survival of ectomycorrhizal fungi in metal-contaminated regions and extreme environments such as Arctic and Antarctic regions have been summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addy HD, Schaffer GF, Miller MH, Peterson RL (1994) Survival of the external mycelium of a VAM fungus in frozen soil over winter. Mycorrhiza 5:1–5

    Article  Google Scholar 

  • Alfredsen G, Høiland K (2001) Succession of terrestrial macrofungi along a deglaciation gradient at Glacier Blåisen, South Norway. Nord J Bot 21:19–37

    Article  Google Scholar 

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, Cambridge, pp 20–25

    Google Scholar 

  • Arduini I, Godbold DL, Onnis A (1994) Heavy metal uptake and distribution in tree seedlings. G Bot Ital 128:219–219

    Article  Google Scholar 

  • Bahram M, Põlme S, Kõljalg U, Tedersoo L (2011) A single European aspen (Populus tremula) tree individual may potentially harbour dozens of Cenococcum geophilum ITS genotypes and hundreds of species of ectomycorrhizal fungi. FEMS Microbiol Ecol 75:313–320

    Article  CAS  PubMed  Google Scholar 

  • Balestrini R, Kottke I (2016) Structure and development of ectomycorrhizal roots. In: Molecular mycorrhizal symbiosis, pp 47–62

    Chapter  Google Scholar 

  • Barden N (2007) Helianthemum grasslands of the Peak District and their possible mycorrhizal associates. Field Mycol 8:119–126

    Article  Google Scholar 

  • Becquer A, Garcia K, Amenc L, Rivard C, Doré J, Trives-Segura C, Szponarski W, Russet S, Baeza Y, Lassalle-Kaiser B, Gay G, Zimmermann SD, Plassard C (2018a) The Hebeloma cylindrosporum HcPT2 Pi transporter plays a key role in ectomycorrhizal symbiosis. New Phytol 220:1185–1199

    Article  CAS  PubMed  Google Scholar 

  • Becquer A, Garcia K, Amenc L, Rivard C, Doré J, Trives-Segura C, Szponarski W, Russet S, Baeza Y, Lassalle-Kaiser B, Gay G, Zimmermann SD, Plassard C (2018b) The Hebeloma cylindrosporum HcPT2 Pi transporter plays a key role in ectomycorrhizal symbiosis. New Phytol 220:1185–1199

    Article  CAS  PubMed  Google Scholar 

  • Beiler KJ, Durall DM, Simard SW, Maxwell SA, Kretzer AM (2010) Architecture of the wood-wide web: Rhizopogon spp. genets link multiple Douglas-fir cohorts. New Phytol 185:543–553

    Article  CAS  PubMed  Google Scholar 

  • Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254:173–181

    Article  CAS  PubMed  Google Scholar 

  • Beneš V, Hložková K, Matěnová M, Borovička J, Kotrba P (2016) Accumulation of Ag and Cu in Amanita strobiliformis and characterization of its Cu and Ag uptake transporter genes AsCTR2 and AsCTR3. Biometals 29:249–264

    Article  PubMed  CAS  Google Scholar 

  • Billings W (1987) Constraints to plant growth, reproduction, and establishment in arctic environments. Arct Alp Res 19:357–365

    Article  Google Scholar 

  • Bjorbækmo M, Carlsen T, Brysting A, Vrålstad T, Høiland K, Ugland K, Geml J, Schumacher T, Kauserud H (2010) High diversity of root associated fungi in both alpine and arctic Dryas octopetala. BMC Plant Biol 10:244

    Article  PubMed  PubMed Central  Google Scholar 

  • Blaudez D, Chalot M (2011) Characterization of the ER-located zinc transporter ZnT1 and identification of a vesicular zinc storage compartment in Hebeloma cylindrosporum. Fungal Genet Biol 48:496–503

    Article  CAS  PubMed  Google Scholar 

  • Bödeker ITM, Nygren CMR, Taylor AFS, Olson Å, Lindahl BD (2009) ClassII peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi. ISME J 3:1387–1395

    Article  PubMed  CAS  Google Scholar 

  • Borovička J, Kotrba P, Gryndler M, Mihaljevič M, Řanda Z, Rohovec J, Cajthaml T, Stijve T, Dunn CE (2010) Bioaccumulation of silver in ectomycorrhizal and saprobic macrofungi from pristine and polluted areas. Sci Total Environ 408:2733–2744

    Article  PubMed  CAS  Google Scholar 

  • Burgess TI, Malajczuk N, Grove TS (1993) The ability of 16 ectomycorrhizal fungi to increase growth and phosphorus uptake of Eucalyptus globulus Labill. And E. diversicolor F. Muell. Plant Soil 153:155–164

    Article  CAS  Google Scholar 

  • Cazares E, Trappe JM (1994) Spore dispersal of ectomycorrhizal fungi on a glacier forefront by mammal mycophagy. Mycologia 86:507

    Article  Google Scholar 

  • Cejpková J, Gryndler M, Hršelová H, Kotrba P, Řanda Z, Synková I, Borovička J (2016) Bioaccumulation of heavy metals, metalloids, and chlorine in ectomycorrhizae from smelter-polluted area. Environ Pollut 218:176–185

    Article  PubMed  CAS  Google Scholar 

  • Chen DM, Bastias BA, Taylor AFS, Cairney JWG (2003) Identification of laccase-like genes in ectomycorrhizal basidiomycetes and transcriptional regulation by nitrogen in Piloderma byssinum. New Phytol 157:547–554

    Article  CAS  PubMed  Google Scholar 

  • Chen DM, Taylor AFS, Burke RM, Cairney JWG (2001) Identification of genes for lignin peroxidases and manganese peroxidases in ectomycorrhizal fungi. New Phytol 152:151–158

    Article  CAS  Google Scholar 

  • Colpaert JV, Wevers JHL, Krznaric E, Adriaensen K (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann For Sci 68:17–24

    Article  Google Scholar 

  • Courbot M, Diez L, Ruotolo R, Chalot M, Leroy P (2004) Cadmium responsive thiols in the ectomycorrhizal fungus Paxillus involutus. Appl Environ Microbiol 70:7413–7417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courty P-E, Bréda N, Garbaye J (2007) Relation between oak tree phenology and the secretion of organic matter degrading enzymes by Lactarius quietus ectomycorrhizas before and during bud break. Soil Biol Biochem 39:1655–1663

    Article  CAS  Google Scholar 

  • Daguerre Y, Levati E, Ruytinx J, Tisserant E, Morin E, Kohler A, Montanini B, Ottonello S, Brun A, Veneault-Fourrey C, Martin F (2017) Regulatory networks underlying mycorrhizal development delineated by genome-wide expression profiling and functional analysis of the transcription factor repertoire of the plant symbiotic fungus Laccaria bicolor. BMC Genomics 18:737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahl E (1956) Rondane Mountain vegetation in South Norway and its relation to the environment. Aschehoug, Oslo. In: Rodwell JS (ed) British plant communities. Cambridge University Press, Cambridge, pp 615–616

    Google Scholar 

  • Frank B (1887) Sind die Wurzelanschwellungen der Erlen und Eläagnaceen Pilzgallen. Berichte der Dtsch Bot Gesellschaft, Bd V 50

    Google Scholar 

  • Frank B (1891) Ueber die auf Verdauung von Pilzen abzielende Symbiose der mit endotrophen Mykorhizen begabten Pflanzen, sowie der Leguminosen und Erlen. Ber Dtsch Bot Ges 9:244–253

    Google Scholar 

  • Gadd GM, Fomina M (2011) Uranium and Fungi. Geomicrobiol J 28:471–482

    Article  CAS  Google Scholar 

  • Gadd GM, Rhee YJ, Stephenson K, Wei Z (2012) Geomycology: metals, actinides and biominerals. Environ Microbiol Rep 4:270–296

    Article  CAS  PubMed  Google Scholar 

  • Gallie U, Meire M, Brunold C (1993) Effect of cadmium on nonmycorrhizal and mycorrhizal Norway spruce seedlings Picea abies (L) Karst and its ectomycorrhizal fungi Laccaria laccata (Scop ex Fr) Bk and Br- sulfate reduction, thiols and distribution of the heavy-metals. New Phytol 125:837–843

    Article  Google Scholar 

  • Garcia K, Delaux P-M, Cope KR, Ané J-M (2015) Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses. New Phytol 208:79–87

    Article  PubMed  Google Scholar 

  • Garcia K, Doidy J, Zimmermann SD, Wipf D, Courty P-E (2016) Take a trip through the plant and fungal transportome of mycorrhiza. Trends Plant Sci 21:937–950

    Article  CAS  PubMed  Google Scholar 

  • Geml J, Timling I, Robinson CH, Lennon N, Nusbaum HC, Brochmann C, Noordeloos ME, Taylor DL (2012) An arctic community of symbiotic fungi assembled by long-distance dispersers: phylogenetic diversity of ectomycorrhizal basidiomycetes in Svalbard based on soil and sporocarp DNA. J Biogeogr 39:74–88

    Article  Google Scholar 

  • Gryndler M, Hršelová H, Soukupová L, Borovička J (2012) Silver release from decomposed hyperaccumulating Amanita solitaria fruit-body biomass strongly affects soil microbial community. Biometals 25:987–993

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Galán C, Delteil A, Garcia K, Houdinet G, Conéjéro G, Gaillard I, Sentenac H, Zimmermann SD (2018) Plant potassium nutrition in ectomycorrhizal symbiosis: properties and roles of the three fungal TOK potassium channels in Hebeloma cylindrosporum. Environ Microbiol 20:1873–1887

    Article  PubMed  CAS  Google Scholar 

  • Hacquard S, Tisserant E, Brun A, Legué V, Martin F, Kohler A (2013) Laser microdissection and microarray analysis of Tuber melanosporum ectomycorrhizas reveal functional heterogeneity between mantle and Hartig net compartments. Environ Microbiol 15:1853–1869

    Article  CAS  PubMed  Google Scholar 

  • Haselwandter K, Read DJ (1980) Fungal associations of roots of dominant and sub-dominant plants in high-alpine vegetation systems with special reference to mycorrhiza. Oecologia 45:57–62

    Article  CAS  PubMed  Google Scholar 

  • Heinonsalo J, Sun H, Santalahti M, Bäcklund K, Hari P, Pumpanen J (2015) Evidences on the ability of mycorrhizal genus Piloderma to use organic nitrogen and deliver it to Scots pine. PLoS One 10(e0131561):1–17

    Google Scholar 

  • Henke C, Jung E-M, Voit A, Kothe E, Krause K (2016) Dehydrogenase genes in the ectomycorrhizal fungus Tricholoma vaccinum: a role for Ald1 in mycorrhizal symbiosis. J Basic Microbiol 56:162–174

    Article  CAS  PubMed  Google Scholar 

  • Henry C, Raivoarisoa J-F, Razafimamonjy A, Ramanankierana H, Andrianaivomahefa P, Ducousso M, Selosse M-A (2016) Characterization of ectomycorrhizal communities of Asteropeia mcphersonii seedlings spontaneously growing in natural forest and in open disturbed areas. Bot Lett 163:273–279

    Article  Google Scholar 

  • Henry C, Sellosse M-A, Richard F, Ramanankierana H, Ducousso M (2014) Comprendre la dynamique des communautés mycorhiziennes lors des successions végétales. Première partie : méthodes d’étude, caractérisations et fonctionnement (revue bibliographique). Rev For Française Fr.], ISSN 0035

    Google Scholar 

  • Hibi T, Nii H, Nakatsu T, Kimura A, Kato H, Hiratake J, Oda J (2004) Crystal structure of gammaglutamylcysteine synthetase: insights into the mechanism of catalysis by a key enzyme for glutathione homeostasis. Proc Natl Acad Sci U S A 101:15052–15057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hobbie JE, Hobbie EA, Drossman H, Conte M, Weber JC, Shamhart J, Weinrobe M (2009) Mycorrhizal fungi supply nitrogen to host plants in Arctic tundra and boreal forests: 15 N is the key signal. Can J Microbiol 55:84–94

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Dong R, Allen R, Davis EL, Baum TJ, Hussey RS (2006) A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor. Mol Plant-Microbe Interact 19:463–470

    Article  CAS  PubMed  Google Scholar 

  • Ilyas S, Rehman A (2015) Oxidative stress, glutathione level and antioxidant response to heavy metals in multi-resistant pathogen, Candida tropicalis. Environ Monit Assess 187:1–7

    Article  CAS  Google Scholar 

  • Jamoni P (2008) Funghi alpini delle zone alpine superiori e inferiori. Associazione Micologica Bresadola; Fondazione Centro Studi Micologici dell’ A.M.B., Trento Italy; Vicenza Italy

    Google Scholar 

  • Jumpponen A, Egerton-Warburton L (2005) Mycorrhizal Fungi in successional environments: a community assembly model incorporating host plant, environmental, and biotic filters. In: Dighton J, White JF (eds) The fungal community, its organization and role in the ecosystem, 3rd edn. CRC Press, Boca Raton, pp 159–188

    Google Scholar 

  • Kalsotra T, Khullar S, Agnihotri R, Reddy MS (2018) Metal induction of two metallothionein genes in the ectomycorrhizal fungus Suillus himalayensis and their role in metal tolerance. Microbiology 164:868–876

    Article  CAS  PubMed  Google Scholar 

  • Karpati AS, Handel SN, Dighton J, Horton TR (2011) Quercus rubra-associated ectomycorrhizal fungal communities of disturbed urban sites and mature forests. Mycorrhiza 21:537–547

    Article  PubMed  Google Scholar 

  • Kazan K, Manners JM (2012) JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci 17:22–31

    Article  CAS  PubMed  Google Scholar 

  • Khosla B, Kaur H, Reddy MS (2009) Influence of ectomycorrhizal colonization on the growth and mineral nutrition of Populus deltoides under aluminum toxicity. J Plant Interact 4:93–99

    Article  CAS  Google Scholar 

  • Khullar S, Reddy MS (2018) Ectomycorrhizal fungi and its role in metal homeostasis through metallothionein and glutathione mechanisms. Curr Biotechnol 7:231–241

    Article  CAS  Google Scholar 

  • Khullar S, Reddy MS (2019a) Cadmium and arsenic responses in the ectomycorrhizal fungus Laccaria bicolor: glutathione metabolism and its role in metal(loid) homeostasis. Environ Microbiol Rep 11:53–61

    Article  CAS  PubMed  Google Scholar 

  • Khullar S, Reddy MS (2019b) Cadmium induced glutathione bioaccumulation mediated by γ-glutamylcysteine synthetase in ectomycorrhizal fungus Hebeloma cylindrosporum. Biometals 32:101–110

    Article  CAS  PubMed  Google Scholar 

  • Kohler A, Kuo A, Nagy LG et al (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410–415

    Article  CAS  PubMed  Google Scholar 

  • Krause K, Henke C, Asiimwe T, Ulbricht A, Klemmer S, Schachtschabel D, Boland W, Kothe E (2015) Biosynthesis and secretion of indole-3-acetic acid and its morphological effects on tricholoma vaccinum-spruce ectomycorrhiza. Appl Environ Microbiol 81:7003–7011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubrová J, Žigová A, Řanda Z, Rohovec J, Gryndler M, Krausová I, Dunn CE, Kotrba P, Borovička J (2014) On the possible role of macrofungi in the biogeochemical fate of uranium in polluted forest soils. J Hazard Mater 280:79–88

    Article  PubMed  CAS  Google Scholar 

  • Kumari D, Reddy MS, Upadhyay RC (2011) Cantharellus pseudoformosus, a new species associated with Cedrus deodara from India. Mycoscience 52:147–151

    Article  Google Scholar 

  • Lazaruk LW, Kernaghan G, Macdonald SE, Khasa D (2005) Effects of partial cutting on the ectomycorrhizae of Picea glauca forests in northwestern Alberta. Can J For Res 35:1442–1454

    Article  Google Scholar 

  • Leszczyszyn OI, Imam HT, Blindauer CA (2013) Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics 5:1146

    Article  CAS  PubMed  Google Scholar 

  • Liao H-L, Chen Y, Bruns TD, Peay KG, Taylor JW, Branco S, Talbot JM, Vilgalys R (2014) Metatranscriptomic analysis of ectomycorrhizal roots reveals genes associated with Piloderma-Pinus symbiosis: improved methodologies for assessing gene expression in situ. Environ Microbiol 16:3730–3742

    Article  CAS  PubMed  Google Scholar 

  • Liu YJ, Hall BD (2004) Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. Proc Natl Acad Sci U S A 101:507–512

    Google Scholar 

  • Luis P, Kellner H, Zimdars B, Langer U, Martin F, Buscot F (2005) Patchiness and spatial distribution of laccase genes of ectomycorrhizal, saprotrophic, and unknown basidiomycetes in the upper horizons of a mixed forest cambisol. Microb Ecol 50:570–579

    Article  CAS  PubMed  Google Scholar 

  • Lundell TK, Mäkelä MR, de Vries RP, Hildén KS (2014) Genomics, lifestyles and future prospects of wood-decay and litter-decomposing basidiomycota. Adv Bot Res 70:329–370

    Article  Google Scholar 

  • Maggi O, Tosi S, Angelova M, Lagostina E, Fabbri AA, Pecoraro L, Altobelli E, Picco AM, Savino E, Branda E, Turchetti B, Zotti M, Vizzini A, Buzzini P (2013) Adaptation of fungi, including yeasts, to cold environments. Plant Biosyst – An Int J Deal All Asp Plant Biol 147:247–258

    Google Scholar 

  • Martin F, Aerts A, Ahrén D et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Kohler A, Duplessis S (2007) Living in harmony in the wood underground: ectomycorrhizal genomics. Curr Opin Plant Biol 10:204–210

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Kohler A, Murat C, Veneault-Fourrey C, Hibbett DS (2016) Unearthing the roots of ectomycorrhizal symbioses. Nat Rev Microbiol 14:760–773

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Nehls U (2009) Harnessing ectomycorrhizal genomics for ecological insights. Curr Opin Plant Biol 12:508–515

    Article  CAS  PubMed  Google Scholar 

  • Mehra RK, Tarbet EB, Gray WR, Winge DR (1988) Metal-specific synthesis of two metallothioneins and gamma-glutamyl peptides in Candida glabrata. Proc Natl Acad Sci U S A 85:8815–8819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mello A, Balestrini R (2018) Recent insights on biological and ecological aspects of ectomycorrhizal fungi and their interactions. Front Microbiol 9:216

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller SL, Larsson E, Larsson K-H, Verbeken A, Nuytinck J (2006) Perspectives in the new Russulales. Mycologia 98:960–970

    Article  PubMed  Google Scholar 

  • Mohanan C (2014) Macrofungal diversity in the Western Ghats, Kerala, India: members of Russulaceae. J Threat Taxa 6:5636–5648

    Article  Google Scholar 

  • Morgado LN, Semenova TA, Welker JM, Walker MD, Smets E, Geml J (2015) Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska. Glob Chang Biol 21:959–972

    Article  PubMed  Google Scholar 

  • Newsham KK, Hopkins DW, Carvalhais LC, Fretwell PT, Rushton SP, O’Donnell AG, Dennis PG (2016) Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nat Clim Chang 6:182–186

    Article  Google Scholar 

  • Osobová M, Urban V, Jedelský PL, Borovička J, Gryndler M, Ruml T, Kotrba P (2011) Three metallothionein isoforms and sequestration of intracellular silver in the hyperaccumulator Amanita strobiliformis. New Phytol 190:916–926

    Article  PubMed  CAS  Google Scholar 

  • Pena R, Lang C, Naumann A, Polle A (2014) Ectomycorrhizal identification in environmental samples of tree roots by Fourier-transform infrared (FTIR) spectroscopy. Front Plant Sci 5:229

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson RL, Massicotte HB (2004) Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can J Bot 82:1074–1088

    Article  Google Scholar 

  • Pikalova T, Sacky J, Briksi A, Borovicka J, Kotrba P (2011) Zinc accumulation and different ways to sequestration of intracellular zinc in fruit-bodies of ectomycorrhizal fungi Russula spp. and hebeloma spp. In: Proceedings of the 7th international conference on mushroom products

    Google Scholar 

  • Plett JM, Daguerre Y, Wittulsky S, Vayssières A, Deveau A, Melton SJ, Kohler A, Morrell-Falvey JL, Brun A, Veneault-Fourrey C, Martin F (2014) Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proc Natl Acad Sci U S A 111:8299–8304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plett JM, Kemppainen M, Kale SD, Kohler A, Legué V, Brun A, Tyler BM, Pardo AG, Martin F (2011) A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr Biol 21:1197–1203

    Article  CAS  PubMed  Google Scholar 

  • Raidl S (1997) Studien zur Ontogenie an Rhizomorphen von Ektomykorrhizen. J Cramer

    Google Scholar 

  • Ramesh G, Podila GK, Gay G, Marmeisse R, Reddy MS (2009) Different patterns of regulation for the copper and cadmium metallothioneins of the ectomycorrhizal fungus Hebeloma cylindrosporum. Appl Environ Microbiol 75:2266–2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy MS, Prasanna L, Marmeisse R, Fraissinet-Tachet L (2014) Differential expression of metallothioneins in response to heavy metals and their involvement in metal tolerance in the symbiotic basidiomycete Laccaria bicolor. Microbiology 160:2235–2242

    Article  CAS  PubMed  Google Scholar 

  • Reddy MS, Verma B (2014) Suillus triacicularis sp. nov., a new species associated with Pinus roxburghii from northwestern Himalayas, India. Phytotaxa 162:157

    Article  Google Scholar 

  • Rineau F, Lmalem H, Ahren D, Shah F, Johansson T, Coninx L, Ruytinx J, Nguyen H, Grigoriev I, Kuo A, Kohler A, Morin E, Vangronsveld J, Martin F, Colpaert JV (2017) Comparative genomics and expression levels of hydrophobins from eight mycorrhizal genomes. Mycorrhiza 27:383–396

    Article  CAS  PubMed  Google Scholar 

  • Sácký J, Leonhardt T, Borovička J, Gryndler M, Briksí A, Kotrba P (2014) Intracellular sequestration of zinc, cadmium and silver in Hebeloma mesophaeum and characterization of its metallothionein genes. Fungal Genet Biol 67:3–14

    Article  PubMed  CAS  Google Scholar 

  • Sammer D, Krause K, Gube M, Wagner K, Kothe E (2016) Hydrophobins in the life cycle of the ectomycorrhizal basidiomycete Tricholoma vaccinum. PLoS One 11:e0167773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schimel JP, Bilbrough C, Welker JM (2004) Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biol Biochem 36:217–227

    Article  CAS  Google Scholar 

  • Schlunk I, Krause K, Wirth S, Kothe E (2015) A transporter for abiotic stress and plant metabolite resistance in the ectomycorrhizal fungus Tricholoma vaccinum. Environ Sci Pollut Res 22:19384–19393

    Article  CAS  Google Scholar 

  • Selosse M-A, Richard F, He X, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628

    Article  PubMed  Google Scholar 

  • Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP (2012) Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev 26:39–60

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Elsevier, New York, p 120

    Google Scholar 

  • Tang Y, Shi L, Zhong K, Shen Z, Chen Y (2019) Ectomycorrhizal fungi may not act as a barrier inhibiting host plant absorption of heavy metals. Chemosphere 215:115–123

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Polme S et al (2014) Global diversity and geography of soil fungi. Science 346:1256688–1256688

    Article  PubMed  CAS  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  PubMed  Google Scholar 

  • Thorsen M, Lagniel G, Kristiansson E, Junot C, Nerman O, Labarre J, Tamás MJ (2007) Quantitaive transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite. Physiol Genomics 30:35–43

    Article  CAS  PubMed  Google Scholar 

  • Timling I, Dahlberg A, Walker DA, Gardes M, Charcosset JY, Welker JM, Taylor DL (2012) Distribution and drivers of ectomycorrhizal fungal communities across the North American Arctic. Ecosphere 3:art111

    Article  Google Scholar 

  • Timling I, Taylor DL (2012) Peeking through a frosty window: molecular insights into the ecology of Arctic soil fungi. Fungal Ecol 5:419–429

    Article  Google Scholar 

  • Townsend DM (2007) S-Gluathionylation: indicator of cell stress and regulator of the unfolded protein response. Mol Interv 7:313–324

    Article  CAS  PubMed  Google Scholar 

  • Treseder KK, Torn MS, Masiello CA (2006) An ecosystem-scale radiocarbon tracer to test use of litter carbon by ectomycorrhizal fungi. Soil Biol Biochem 38:1077–1082

    Article  CAS  Google Scholar 

  • Turgeman T, Ben Asher J, Roth-Bejerano N, Kagan-Zur V, Kapulnik Y, Sitrit Y (2011) Mycorrhizal association between the desert truffle Terfezia boudieri and Helianthemum sessiliflorum alters plant physiology and fitness to arid conditions. Mycorrhiza 21:623–630

    Article  CAS  PubMed  Google Scholar 

  • Twieg BD, Durall DM, Simard SW (2007) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176:437–447

    Article  PubMed  Google Scholar 

  • Urban A (2011) Metal elements and the diversity and function of ectomycorrhizal communities, pp 231–254

    Google Scholar 

  • Vašák M, Meloni G (2011) Chemistry and biology of mammalian metallothioneins. JBIC J Biol Inorg Chem 16:1067–1078

    Article  PubMed  CAS  Google Scholar 

  • Vayssières A, Pěnčík A, Felten J, Kohler A, Ljung K, Martin F, Legué V (2015) Development of the Poplar-Laccaria bicolor Ectomycorrhiza modifies root auxin metabolism, signaling, and response. Plant Physiol 169:890–902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Veneault-Fourrey C, Commun C, Kohler A, Morin E, Balestrini R, Plett J, Danchin E, Coutinho P, Wiebenga A, de Vries RP, Henrissat B, Martin F (2014) Genomic and transcriptomic analysis of Laccaria bicolor CAZome reveals insights into polysaccharides remodelling during symbiosis establishment. Fungal Genet Biol 72:168–181

    Article  CAS  PubMed  Google Scholar 

  • Verma B, Reddy MS (2015) Suillus indicus sp. nov. (Boletales, Basidiomycota), a new boletoid fungus from northwestern Himalayas, India. Mycology 6:35–41

    Article  PubMed  Google Scholar 

  • Wang B, Qiu Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Anasontzis GE, Labourel A, Champion C, Haon M, Kemppainen M, Commun C, Deveau A, Pardo A, Veneault-Fourrey C, Kohler A, Rosso M-N, Henrissat B, Berrin J-G, Martin F (2018) The ectomycorrhizal basidiomycete Laccaria bicolor releases a secreted β-1,4 endoglucanase that plays a key role in symbiosis development. New Phytol 220:1309–1321

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sudhakara Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, T., Reddy, M.S. (2019). Recent Developments in Ectomycorrhizal Research. In: Satyanarayana, T., Deshmukh, S., Deshpande, M. (eds) Advancing Frontiers in Mycology & Mycotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9349-5_12

Download citation

Publish with us

Policies and ethics